Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove prior_box #49006

Merged
merged 2 commits into from
Dec 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 2 additions & 132 deletions python/paddle/fluid/layers/detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,6 @@
from ..framework import in_dygraph_mode

__all__ = [
'prior_box',
'density_prior_box',
'multi_box_head',
'anchor_generator',
Expand All @@ -58,135 +57,6 @@
]


def prior_box(
input,
image,
min_sizes,
max_sizes=None,
aspect_ratios=[1.0],
variance=[0.1, 0.1, 0.2, 0.2],
flip=False,
clip=False,
steps=[0.0, 0.0],
offset=0.5,
name=None,
min_max_aspect_ratios_order=False,
):
"""

This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.

Parameters:
input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
the data type should be float32 or float64.
min_sizes(list|tuple|float): the min sizes of generated prior boxes.
max_sizes(list|tuple|None): the max sizes of generated prior boxes.
Default: None.
aspect_ratios(list|tuple|float): the aspect ratios of generated
prior boxes. Default: [1.].
variance(list|tuple): the variances to be encoded in prior boxes.
Default:[0.1, 0.1, 0.2, 0.2].
flip(bool): Whether to flip aspect ratios. Default:False.
clip(bool): Whether to clip out-of-boundary boxes. Default: False.
step(list|tuple): Prior boxes step across width and height, If
step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
height or weight of the input will be automatically calculated.
Default: [0., 0.]
offset(float): Prior boxes center offset. Default: 0.5
min_max_aspect_ratios_order(bool): If set True, the output prior box is
in order of [min, max, aspect_ratios], which is consistent with
Caffe. Please note, this order affects the weights order of
convolution layer followed by and does not affect the final
detection results. Default: False.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

Returns:
Tuple: A tuple with two Variable (boxes, variances)

boxes(Variable): the output prior boxes of PriorBox.
4-D tensor, the layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input,
num_priors is the total box count of each position of input.

variances(Variable): the expanded variances of PriorBox.
4-D tensor, the layput is [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_priors is the total box count of each position of input

Examples:
.. code-block:: python

#declarative mode
import paddle.fluid as fluid
import numpy as np
import paddle
paddle.enable_static()
input = fluid.data(name="input", shape=[None,3,6,9])
image = fluid.data(name="image", shape=[None,3,9,12])
box, var = fluid.layers.prior_box(
input=input,
image=image,
min_sizes=[100.],
clip=True,
flip=True)

place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

# prepare a batch of data
input_data = np.random.rand(1,3,6,9).astype("float32")
image_data = np.random.rand(1,3,9,12).astype("float32")

box_out, var_out = exe.run(fluid.default_main_program(),
feed={"input":input_data,"image":image_data},
fetch_list=[box,var],
return_numpy=True)

# print(box_out.shape)
# (6, 9, 1, 4)
# print(var_out.shape)
# (6, 9, 1, 4)

# imperative mode
import paddle.fluid.dygraph as dg

with dg.guard(place) as g:
input = dg.to_variable(input_data)
image = dg.to_variable(image_data)
box, var = fluid.layers.prior_box(
input=input,
image=image,
min_sizes=[100.],
clip=True,
flip=True)
# print(box.shape)
# [6L, 9L, 1L, 4L]
# print(var.shape)
# [6L, 9L, 1L, 4L]

"""
return paddle.vision.ops.prior_box(
input=input,
image=image,
min_sizes=min_sizes,
max_sizes=max_sizes,
aspect_ratios=aspect_ratios,
variance=variance,
flip=flip,
clip=clip,
steps=steps,
offset=offset,
min_max_aspect_ratios_order=min_max_aspect_ratios_order,
name=name,
)


def density_prior_box(
input,
image,
Expand Down Expand Up @@ -623,7 +493,7 @@ def _is_list_or_tuple_and_equal(data, length, err_info):
aspect_ratio = [aspect_ratio]
step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]

box, var = prior_box(
box, var = paddle.vision.ops.prior_box(
input,
image,
min_size,
Expand All @@ -634,8 +504,8 @@ def _is_list_or_tuple_and_equal(data, length, err_info):
clip,
step,
offset,
None,
min_max_aspect_ratios_order,
None,
)

box_results.append(box)
Expand Down
42 changes: 0 additions & 42 deletions python/paddle/fluid/tests/test_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,48 +75,6 @@ def dynamic_graph(self, force_to_use_cpu=False):
yield


class TestPriorBox(unittest.TestCase):
def test_prior_box(self):
program = Program()
with program_guard(program):
data_shape = [3, 224, 224]
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32'
)
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
box, var = layers.prior_box(
input=conv1,
image=images,
min_sizes=[100.0],
aspect_ratios=[1.0],
flip=True,
clip=True,
)
assert len(box.shape) == 4
assert box.shape == var.shape
assert box.shape[3] == 4


class TestPriorBox2(unittest.TestCase):
def test_prior_box(self):
program = Program()
with program_guard(program):
data_shape = [None, 3, None, None]
images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
box, var = layers.prior_box(
input=conv1,
image=images,
min_sizes=[100.0],
aspect_ratios=[1.0],
flip=True,
clip=True,
)
assert len(box.shape) == 4
assert box.shape == var.shape
assert box.shape[3] == 4


class TestDensityPriorBox(unittest.TestCase):
def test_density_prior_box(self):
program = Program()
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/fluid/tests/unittests/test_prior_box_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def python_prior_box(
min_max_aspect_ratios_order=False,
name=None,
):
return paddle.fluid.layers.detection.prior_box(
return paddle.vision.ops.prior_box(
input,
image,
min_sizes=min_sizes,
Expand Down