Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[api move] cvm #48989

Merged
merged 10 commits into from
Dec 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions python/paddle/fluid/tests/unittests/test_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,46 @@ def test_type():

self.assertRaises(TypeError, test_type)

def test_cvm(self):
inp = np.ones([10, 10], dtype='float32')
arr = [[0.6931472, -1.904654e-09, 1, 1, 1, 1, 1, 1, 1, 1]] * 10
cvm1 = np.array(arr, dtype='float32')
cvm2 = np.ones([10, 8], dtype='float32')
show_clk = np.ones([10, 2], dtype='float32')
with self.static_graph():
x = paddle.static.data(
name='data',
shape=[10, 10],
dtype='float32',
)
u = paddle.static.data(
name='show_click',
shape=[10, 2],
dtype='float32',
)
no_cvm = paddle.static.nn.continuous_value_model(x, u, True)
static_ret1 = self.get_static_graph_result(
feed={'data': inp, 'show_click': show_clk},
fetch_list=[no_cvm],
)[0]
with self.static_graph():
x = paddle.static.data(
name='data',
shape=[10, 10],
dtype='float32',
)
u = paddle.static.data(
name='show_click',
shape=[10, 2],
dtype='float32',
)
cvm = paddle.static.nn.continuous_value_model(x, u, False)
static_ret2 = self.get_static_graph_result(
feed={'data': inp, 'show_click': show_clk}, fetch_list=[cvm]
)[0]
np.testing.assert_allclose(static_ret1, cvm1, rtol=1e-5, atol=1e-06)
np.testing.assert_allclose(static_ret2, cvm2, rtol=1e-5, atol=1e-06)

def test_Flatten(self):
inp = np.ones([3, 4, 4, 5], dtype='float32')
with self.static_graph():
Expand Down
1 change: 1 addition & 0 deletions python/paddle/static/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from .common import batch_norm # noqa: F401
from .common import instance_norm # noqa: F401
from .common import data_norm # noqa: F401
from .common import continuous_value_model # noqa: F401
from .common import group_norm # noqa: F401
from .common import deform_conv2d # noqa: F401
from .common import conv3d # noqa: F401
Expand Down
49 changes: 49 additions & 0 deletions python/paddle/static/nn/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,6 +321,55 @@ def instance_norm(
return instance_norm_out


@static_only
def continuous_value_model(input, cvm, use_cvm=True):
r"""
**continuous_value_model layers**
Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
:attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
Show and click at first two dims of embedding vector D.
If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
:attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
Args:
input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
A Tensor with type float32, float64.
cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
A Tensor with type float32, float64.
use_cvm (bool): Use show_click or not. if use, the output dim is the same as input.
if not use, the output dim is `input dim - 2` (remove show and click)
Returns:
Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
A Tensor with same type as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
input = paddle.static.data(name="input", shape=[64, 1], dtype="int64")
label = paddle.static.data(name="label", shape=[64, 1], dtype="int64")
w0 = paddle.full(shape=(100, 1), fill_value=2).astype(paddle.float32)
embed = paddle.nn.functional.embedding(
input,
w0)
ones = paddle.full_like(label, 1, dtype="int64")
show_clk = paddle.cast(paddle.concat([ones, label], axis=1), dtype='float32')
show_clk.stop_gradient = True
input_with_cvm = paddle.static.nn.continuous_value_model(embed, show_clk, True)
"""
helper = LayerHelper('cvm', **locals())
out = helper.create_variable(dtype=input.dtype)
check_variable_and_dtype(
input, 'input', ['float16', 'float32', 'float64'], 'cvm'
)
helper.append_op(
type='cvm',
inputs={'X': [input], 'CVM': [cvm]},
outputs={'Y': [out]},
attrs={"use_cvm": use_cvm},
)
return out


@static_only
def data_norm(
input,
Expand Down