-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Paddle Inference] Add fill_any_like trt converter. #47974
Merged
jiweibo
merged 2 commits into
PaddlePaddle:develop
from
xiaoxiaohehe001:add_fill_any_like
Nov 16, 2022
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
93 changes: 93 additions & 0 deletions
93
paddle/fluid/inference/tensorrt/convert/fill_any_like_op.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
class Scope; | ||
|
||
namespace proto { | ||
class OpDesc; | ||
} // namespace proto | ||
} // namespace framework | ||
} // namespace paddle | ||
|
||
namespace paddle { | ||
namespace inference { | ||
namespace tensorrt { | ||
|
||
class FillAnyLikeOpConverter : public OpConverter { | ||
public: | ||
void operator()(const framework::proto::OpDesc& op, | ||
const framework::Scope& scope, | ||
bool test_mode) override { | ||
VLOG(3) << "convert fill_any_like op to tensorrt layer "; | ||
framework::OpDesc op_desc(op, nullptr); | ||
auto* input = engine_->GetITensor(op_desc.Input("X").front()); | ||
auto output_name = op_desc.Output("Out").front(); | ||
auto input_dims = input->getDimensions(); | ||
auto nbDims_num = input_dims.nbDims; | ||
nvinfer1::ITensor* value_tensor; | ||
|
||
const int dtype = PADDLE_GET_CONST(int, op_desc.GetAttr("dtype")); | ||
float value = PADDLE_GET_CONST(float, op_desc.GetAttr("value")); | ||
if ((dtype == 2) || | ||
(dtype == -1 && input->getType() == nvinfer1::DataType::kINT32)) { | ||
value_tensor = Add1DConstantLayer(static_cast<int32_t>(value), | ||
output_name + "_value_tensor_"); | ||
} else { | ||
value_tensor = Add1DConstantLayer(value, output_name + "_value_tensor_"); | ||
} | ||
auto shape_tensor = Shape(input); | ||
auto* one_rank_tensor = Add1DConstantLayer( | ||
std::vector<int32_t>(nbDims_num, 1), output_name + "_one_rank_tensor_"); | ||
auto input_shape_tensor = one_rank_tensor; | ||
auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *value_tensor); | ||
shuffle->setInput(1, *input_shape_tensor); | ||
|
||
std::vector<int32_t> start_vec(nbDims_num, 0); | ||
nvinfer1::Dims start; | ||
start.nbDims = nbDims_num; | ||
for (int32_t i = 0; i < nbDims_num; ++i) { | ||
start.d[i] = start_vec[i]; | ||
} | ||
nvinfer1::Dims size; | ||
size.nbDims = nbDims_num; | ||
nvinfer1::Dims stride; | ||
stride.nbDims = nbDims_num; | ||
|
||
auto starts_tensor = | ||
Add1DConstantLayer(start_vec, output_name + "_start_tensor_"); | ||
auto one_tensor = Add1DConstantLayer(1, output_name + "_one_tensor_"); | ||
|
||
auto sizes_tensor = Max(input_shape_tensor, shape_tensor); | ||
auto input_sub_tensor = Sub(input_shape_tensor, one_tensor); | ||
auto strides_tensor = Min(one_tensor, input_sub_tensor); | ||
|
||
auto layer = TRT_ENGINE_ADD_LAYER( | ||
engine_, Slice, *shuffle->getOutput(0), start, size, stride); | ||
layer->setInput(1, *starts_tensor); | ||
layer->setInput(2, *sizes_tensor); | ||
layer->setInput(3, *strides_tensor); | ||
|
||
RreplenishLayerAndOutput(layer, "fill_any_like", {output_name}, test_mode); | ||
} | ||
}; | ||
|
||
} // namespace tensorrt | ||
} // namespace inference | ||
} // namespace paddle | ||
|
||
REGISTER_TRT_OP_CONVERTER(fill_any_like, FillAnyLikeOpConverter); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
190 changes: 190 additions & 0 deletions
190
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fill_any_like.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest | ||
from program_config import TensorConfig, ProgramConfig | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import List, Dict, Any | ||
import unittest | ||
|
||
|
||
class TrtConvertExpandV2Test(TrtLayerAutoScanTest): | ||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
if self.dtype in [0, 3, 4]: | ||
return False | ||
if self.dims != 4 and self.dtype != 2: | ||
return False | ||
return True | ||
|
||
def sample_program_configs(self): | ||
def generate_input1(attrs: List[Dict[str, Any]]): | ||
if self.dims == 4: | ||
self.input_shape = [1, 1, 4, 6] | ||
if self.dtype == 0: | ||
return np.random.random([1, 1, 4, 6]).astype(np.bool) | ||
elif self.dtype == 2 or self.dtype == -1: | ||
return np.random.random([1, 1, 4, 6]).astype(np.int32) | ||
elif self.dtype == 3: | ||
return np.random.random([1, 1, 4, 6]).astype(np.int64) | ||
elif self.dtype == 4: | ||
return np.random.random([1, 1, 4, 6]).astype(np.float16) | ||
else: | ||
return np.random.random([1, 1, 4, 6]).astype(np.float32) | ||
elif self.dims == 3: | ||
self.input_shape = [1, 8, 6] | ||
return np.random.random([1, 8, 6]).astype(np.int32) | ||
elif self.dims == 2: | ||
self.input_shape = [1, 48] | ||
return np.random.random([1, 48]).astype(np.int32) | ||
elif self.dims == 1: | ||
self.input_shape = [48] | ||
return np.random.random([48]).astype(np.int32) | ||
|
||
def generate_weight1(attrs: List[Dict[str, Any]]): | ||
return np.array([1, 48]).astype(np.int32) | ||
|
||
def generate_shapeT1_data(attrs: List[Dict[str, Any]]): | ||
return np.array([2]).astype(np.int32) | ||
|
||
def generate_shapeT2_data(attrs: List[Dict[str, Any]]): | ||
return np.array([24]).astype(np.int32) | ||
|
||
for dims in [1, 2, 3, 4]: | ||
for value in [2]: | ||
for dtype in [-1, 0, 2, 3, 4, 5]: | ||
dics = [ | ||
{ | ||
"value": value, | ||
"dtype": dtype, | ||
}, | ||
] | ||
self.dims = dims | ||
self.dtype = dtype | ||
dics_intput = [{"X": ["fill_any_like_input"]}] | ||
|
||
ops_config = [ | ||
{ | ||
"op_type": "fill_any_like", | ||
"op_inputs": dics_intput[0], | ||
"op_outputs": {"Out": ["fill_any_like_out"]}, | ||
"op_attrs": dics[0], | ||
} | ||
] | ||
ops = self.generate_op_config(ops_config) | ||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights={}, | ||
inputs={ | ||
"fill_any_like_input": TensorConfig( | ||
data_gen=partial(generate_input1, dics) | ||
) | ||
}, | ||
outputs=["fill_any_like_out"], | ||
) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config | ||
) -> (paddle_infer.Config, List[int], int): | ||
def generate_dynamic_shape(attrs): | ||
if self.dims == 4: | ||
self.dynamic_shape.min_input_shape = { | ||
"fill_any_like_input": [1, 1, 4, 6] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"fill_any_like_input": [10, 1, 4, 6] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"fill_any_like_input": [1, 1, 4, 6] | ||
} | ||
elif self.dims == 3: | ||
self.dynamic_shape.min_input_shape = { | ||
"fill_any_like_input": [1, 8, 6] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"fill_any_like_input": [4, 8, 6] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"fill_any_like_input": [1, 8, 6] | ||
} | ||
elif self.dims == 2: | ||
self.dynamic_shape.min_input_shape = { | ||
"fill_any_like_input": [1, 48] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"fill_any_like_input": [4, 48] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"fill_any_like_input": [1, 48] | ||
} | ||
elif self.dims == 1: | ||
self.dynamic_shape.min_input_shape = { | ||
"fill_any_like_input": [48] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"fill_any_like_input": [48] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"fill_any_like_input": [48] | ||
} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
if not dynamic_shape: | ||
return 0, 3 | ||
else: | ||
return 1, 2 | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs for i in range(len(program_config.ops)) | ||
] | ||
|
||
clear_dynamic_shape() | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False | ||
), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False | ||
), 1e-5 | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), 1e-5 | ||
|
||
def add_skip_trt_case(self): | ||
pass | ||
|
||
def test(self): | ||
self.add_skip_trt_case() | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
我理解这个过程应该就是把一个shape为(1,)的tensor,reshape成(1,1,1,,,,)(nbDims_num个1)这样的形式,nbDims_num在组网过程中完全固定下来,能否改成不用setInput(1, *input_shape_tensor);这样的形式,直接改成setReshapeDimensions。