Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Paddle Inference] Add fill_any_like trt converter. #47974

Merged
merged 2 commits into from
Nov 16, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2255,6 +2255,7 @@ USE_TRT_CONVERTER(pad);
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
USE_TRT_CONVERTER(split);
USE_TRT_CONVERTER(fill_any_like);
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu);
Expand Down
1 change: 1 addition & 0 deletions paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ list(
multihead_matmul_op.cc
multihead_matmul_roformer_op.cc
shuffle_channel_op.cc
fill_any_like_op.cc
where_op.cc
swish_op.cc
silu_op.cc
Expand Down
93 changes: 93 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/fill_any_like_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;

namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

class FillAnyLikeOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert fill_any_like op to tensorrt layer ";
framework::OpDesc op_desc(op, nullptr);
auto* input = engine_->GetITensor(op_desc.Input("X").front());
auto output_name = op_desc.Output("Out").front();
auto input_dims = input->getDimensions();
auto nbDims_num = input_dims.nbDims;
nvinfer1::ITensor* value_tensor;

const int dtype = PADDLE_GET_CONST(int, op_desc.GetAttr("dtype"));
float value = PADDLE_GET_CONST(float, op_desc.GetAttr("value"));
if ((dtype == 2) ||
(dtype == -1 && input->getType() == nvinfer1::DataType::kINT32)) {
value_tensor = Add1DConstantLayer(static_cast<int32_t>(value),
output_name + "_value_tensor_");
} else {
value_tensor = Add1DConstantLayer(value, output_name + "_value_tensor_");
}
auto shape_tensor = Shape(input);
auto* one_rank_tensor = Add1DConstantLayer(
std::vector<int32_t>(nbDims_num, 1), output_name + "_one_rank_tensor_");
auto input_shape_tensor = one_rank_tensor;
auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *value_tensor);
shuffle->setInput(1, *input_shape_tensor);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

我理解这个过程应该就是把一个shape为(1,)的tensor,reshape成(1,1,1,,,,)(nbDims_num个1)这样的形式,nbDims_num在组网过程中完全固定下来,能否改成不用setInput(1, *input_shape_tensor);这样的形式,直接改成setReshapeDimensions。


std::vector<int32_t> start_vec(nbDims_num, 0);
nvinfer1::Dims start;
start.nbDims = nbDims_num;
for (int32_t i = 0; i < nbDims_num; ++i) {
start.d[i] = start_vec[i];
}
nvinfer1::Dims size;
size.nbDims = nbDims_num;
nvinfer1::Dims stride;
stride.nbDims = nbDims_num;

auto starts_tensor =
Add1DConstantLayer(start_vec, output_name + "_start_tensor_");
auto one_tensor = Add1DConstantLayer(1, output_name + "_one_tensor_");

auto sizes_tensor = Max(input_shape_tensor, shape_tensor);
auto input_sub_tensor = Sub(input_shape_tensor, one_tensor);
auto strides_tensor = Min(one_tensor, input_sub_tensor);

auto layer = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *shuffle->getOutput(0), start, size, stride);
layer->setInput(1, *starts_tensor);
layer->setInput(2, *sizes_tensor);
layer->setInput(3, *strides_tensor);

RreplenishLayerAndOutput(layer, "fill_any_like", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(fill_any_like, FillAnyLikeOpConverter);
24 changes: 24 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1161,6 +1161,28 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}

if (op_type == "fill_any_like") {
if (!with_dynamic_shape) {
VLOG(3) << "the fill_any_like does not support static shape yet";
return false;
}
int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
if (dtype != -1 && dtype != 2 && dtype != 5) {
VLOG(3) << "the fill_any_like only supports int32 and float32";
return false;
}
if (dtype == -1) {
auto* block = desc.Block();
auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
auto input_type = x_var_desc->GetDataType();
if (input_type != framework::proto::VarType::INT32 &&
input_type != framework::proto::VarType::FP32) {
VLOG(3) << "the fill_any_like only supports int32 and float32";
return false;
}
}
}

if (op_type == "slice") {
if (desc.HasAttr("decrease_axis")) {
std::vector<int> decrease_axis =
Expand Down Expand Up @@ -2290,6 +2312,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_max",
"equal",
"dropout",
"fill_any_like",
"prelu",
"conv2d_transpose",
"depthwise_conv2d_transpose",
Expand Down Expand Up @@ -2415,6 +2438,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_max",
"equal",
"dropout",
"fill_any_like",
"prelu",
"conv2d_transpose",
"depthwise_conv2d_transpose",
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import List, Dict, Any
import unittest


class TrtConvertExpandV2Test(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
if self.dtype in [0, 3, 4]:
return False
if self.dims != 4 and self.dtype != 2:
return False
return True

def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]]):
if self.dims == 4:
self.input_shape = [1, 1, 4, 6]
if self.dtype == 0:
return np.random.random([1, 1, 4, 6]).astype(np.bool)
elif self.dtype == 2 or self.dtype == -1:
return np.random.random([1, 1, 4, 6]).astype(np.int32)
elif self.dtype == 3:
return np.random.random([1, 1, 4, 6]).astype(np.int64)
elif self.dtype == 4:
return np.random.random([1, 1, 4, 6]).astype(np.float16)
else:
return np.random.random([1, 1, 4, 6]).astype(np.float32)
elif self.dims == 3:
self.input_shape = [1, 8, 6]
return np.random.random([1, 8, 6]).astype(np.int32)
elif self.dims == 2:
self.input_shape = [1, 48]
return np.random.random([1, 48]).astype(np.int32)
elif self.dims == 1:
self.input_shape = [48]
return np.random.random([48]).astype(np.int32)

def generate_weight1(attrs: List[Dict[str, Any]]):
return np.array([1, 48]).astype(np.int32)

def generate_shapeT1_data(attrs: List[Dict[str, Any]]):
return np.array([2]).astype(np.int32)

def generate_shapeT2_data(attrs: List[Dict[str, Any]]):
return np.array([24]).astype(np.int32)

for dims in [1, 2, 3, 4]:
for value in [2]:
for dtype in [-1, 0, 2, 3, 4, 5]:
dics = [
{
"value": value,
"dtype": dtype,
},
]
self.dims = dims
self.dtype = dtype
dics_intput = [{"X": ["fill_any_like_input"]}]

ops_config = [
{
"op_type": "fill_any_like",
"op_inputs": dics_intput[0],
"op_outputs": {"Out": ["fill_any_like_out"]},
"op_attrs": dics[0],
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"fill_any_like_input": TensorConfig(
data_gen=partial(generate_input1, dics)
)
},
outputs=["fill_any_like_out"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], int):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"fill_any_like_input": [1, 1, 4, 6]
}
self.dynamic_shape.max_input_shape = {
"fill_any_like_input": [10, 1, 4, 6]
}
self.dynamic_shape.opt_input_shape = {
"fill_any_like_input": [1, 1, 4, 6]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"fill_any_like_input": [1, 8, 6]
}
self.dynamic_shape.max_input_shape = {
"fill_any_like_input": [4, 8, 6]
}
self.dynamic_shape.opt_input_shape = {
"fill_any_like_input": [1, 8, 6]
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"fill_any_like_input": [1, 48]
}
self.dynamic_shape.max_input_shape = {
"fill_any_like_input": [4, 48]
}
self.dynamic_shape.opt_input_shape = {
"fill_any_like_input": [1, 48]
}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {
"fill_any_like_input": [48]
}
self.dynamic_shape.max_input_shape = {
"fill_any_like_input": [48]
}
self.dynamic_shape.opt_input_shape = {
"fill_any_like_input": [48]
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if not dynamic_shape:
return 0, 3
else:
return 1, 2

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5

def add_skip_trt_case(self):
pass

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()