Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cudnn conv op #4195

Merged
merged 25 commits into from
Oct 12, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
79d1552
add cudnn_conv_op
typhoonzero Sep 18, 2017
caf4af7
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Sep 19, 2017
ba95b32
WIP
typhoonzero Sep 19, 2017
c0fbc19
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Sep 21, 2017
53a9b61
update
typhoonzero Sep 22, 2017
4e8b492
update
typhoonzero Sep 22, 2017
5dee5cb
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Sep 23, 2017
b3ab7bc
fix grad check
typhoonzero Sep 25, 2017
4f44298
use platform::memory
typhoonzero Sep 25, 2017
6f3d4a3
add support group for cudnn
typhoonzero Sep 25, 2017
e83c379
update
typhoonzero Sep 27, 2017
f9a0dba
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Sep 28, 2017
2065e83
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Sep 29, 2017
e92e555
follow comments
typhoonzero Sep 30, 2017
5943152
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Sep 30, 2017
d8db9bf
fix onlycpu build
typhoonzero Sep 30, 2017
09432ba
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Oct 9, 2017
a379740
update cuda define
typhoonzero Oct 9, 2017
19dba4c
follow comments
typhoonzero Oct 9, 2017
7bdf883
follow comments
typhoonzero Oct 9, 2017
0c72dab
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
typhoonzero Oct 10, 2017
9e0fbbf
merge with updates
typhoonzero Oct 10, 2017
276e699
fix compile error
typhoonzero Oct 10, 2017
0c3d332
follow comments
typhoonzero Oct 11, 2017
8d7cfc5
follow comments
typhoonzero Oct 11, 2017
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions paddle/framework/operator.h
Original file line number Diff line number Diff line change
Expand Up @@ -289,6 +289,15 @@ class ExecutionContext {
return device_context_;
}

#ifdef PADDLE_WITH_CUDA
const platform::CUDADeviceContext& cuda_device_context() const {
PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
auto cuda_ctx =
reinterpret_cast<const platform::CUDADeviceContext*>(&device_context_);
return *cuda_ctx;
}
#endif

private:
const OperatorBase& op_;
const Scope& scope_;
Expand Down
166 changes: 73 additions & 93 deletions paddle/operators/conv2d_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,111 +12,91 @@
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/gemm_conv2d_op.h"
#include "paddle/operators/conv2d_op.h"

namespace paddle {
namespace operators {

int outputSize(int input_size, int filter_size, int padding, int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
void Conv2DOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of Conv2DOp should not be null.");

auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int groups = ctx->Attrs().Get<int>("groups");
int input_channels = in_dims[1];
int output_channels = filter_dims[0];

PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D.");
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
"The number of output channels should be divided by groups.");

auto output_height =
OutputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
auto output_width =
OutputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim("Output",
{in_dims[0], filter_dims[0], output_height, output_width});
}

class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of Conv2DOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of Conv2DOp should not be null.");

auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int groups = ctx->Attrs().Get<int>("groups");
int input_channels = in_dims[1];
int output_channels = filter_dims[0];

PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D.");
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
"The number of output channels should be divided by groups.");

auto output_height =
outputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
auto output_width =
outputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim(
"Output", {in_dims[0], filter_dims[0], output_height, output_width});
}
};

class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
AddInput(
"Filter",
"The filter tensor of convolution operator."
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"H and W is height and width of filter. "
"If the groups attribute is greater than 1, C equal the number of "
"input image channels divided by the groups.");
AddOutput("Output",
"The output tensor of convolution operator."
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
.SetDefault({0, 0});
AddAttr<int>(
"groups",
"group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
"to the second half.")
.SetDefault(1);
AddComment(R"DOC(
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
AddInput("Filter",
"The filter tensor of convolution operator."
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"H and W is height and width of filter. "
"If the groups attribute is greater than 1, C equal the number of "
"input image channels divided by the groups.");
AddOutput("Output",
"The output tensor of convolution operator."
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
.SetDefault({0, 0});
AddAttr<int>(
"groups",
"group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
"to the second half.")
.SetDefault(1);
AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
}
};

class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
}

protected:
void InferShape(framework::InferShapeContext* ctx) const override {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
void Conv2DOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
};
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
}

} // namespace operators
} // namespace paddle
Expand Down
2 changes: 1 addition & 1 deletion paddle/operators/conv2d_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/gemm_conv2d_op.h"
#include "paddle/operators/conv2d_op.h"

namespace ops = paddle::operators;

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,38 @@ namespace operators {

using Tensor = framework::Tensor;

// Base convolution operator definations for other conv
// like operators to reuse the implementation.
inline int OutputSize(int input_size, int filter_size, int padding,
int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};

class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};

class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};

template <typename Place, typename T>
class GemmConv2DKernel : public framework::OpKernel<T> {
public:
Expand Down Expand Up @@ -74,7 +106,6 @@ class GemmConv2DKernel : public framework::OpKernel<T> {

framework::DDim output_matrix_shape = {output_channels,
output_height * output_width};

// convolution operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
Expand Down
47 changes: 47 additions & 0 deletions paddle/operators/conv_cudnn_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/conv2d_op.h"

namespace paddle {
namespace operators {

class CudnnConvOpMaker : public Conv2DOpMaker {
public:
CudnnConvOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: Conv2DOpMaker(proto, op_checker) {
AddAttr<std::vector<int>>("dilations", "dilations of convolution operator.")
.SetDefault(std::vector<int>{1, 1});
AddAttr<int>("workspace_size_MB",
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardward. This size should be carefully setted.")
.SetDefault(4096);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(conv_cudnn, ops::Conv2DOp, ops::CudnnConvOpMaker, conv_cudnn_grad,
ops::Conv2DOpGrad);
REGISTER_OP_CPU_KERNEL(
conv_cudnn, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv_cudnn_grad,
ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
Loading