Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move sgd to phi #40045

Merged
merged 6 commits into from
Mar 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion paddle/fluid/framework/operator.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2048,7 +2048,11 @@ void OperatorWithKernel::BuildPhiKernelContext(
// deal with optional here
if ((it == ctx.inputs.end() || it->second.size() == 0) &&
(input_defs[i].type_index ==
std::type_index(typeid(paddle::optional<const phi::DenseTensor&>)))) {
std::type_index(
typeid(paddle::optional<const phi::DenseTensor&>)) ||
input_defs[i].type_index ==
std::type_index(
typeid(paddle::optional<const phi::SelectedRows&>)))) {
pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
auto end_idx = start_idx + 1;
pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
Expand Down
65 changes: 60 additions & 5 deletions paddle/fluid/operators/optimizers/dgc_momentum_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
#include <memory>

#include "paddle/fluid/operators/optimizers/momentum_op.h"
#include "paddle/fluid/operators/optimizers/sgd_op.h"
#include "paddle/phi/kernels/sgd_kernel.h"

namespace paddle {
namespace operators {
Expand All @@ -26,8 +26,7 @@ template <typename DeviceContext, typename T>
class DGCMomentumKernel : public framework::OpKernel<T> {
public:
DGCMomentumKernel()
: _momentum_op_kernel(new MomentumOpKernel<DeviceContext, T>()),
_sgd_op_kernel(new SGDOpKernel<DeviceContext, T>()) {}
: _momentum_op_kernel(new MomentumOpKernel<DeviceContext, T>()) {}

void Compute(const framework::ExecutionContext& context) const override {
auto rampup_begin_step = context.Attr<float>("rampup_begin_step");
Expand Down Expand Up @@ -67,12 +66,68 @@ class DGCMomentumKernel : public framework::OpKernel<T> {
}

VLOG(10) << " so use sgd optimizer";
return _sgd_op_kernel->Compute(context);

const auto* param_var = context.InputVar("Param");
const auto* grad_var = context.InputVar("Grad");
auto* learning_rate = context.Input<framework::Tensor>("LearningRate");
bool multi_precision = context.Attr<bool>("multi_precision");
if (param_var->IsType<framework::LoDTensor>()) {
auto* param = context.Input<framework::Tensor>("Param");
auto* param_out = context.Output<framework::Tensor>("ParamOut");
auto* master_param_out =
context.Output<framework::Tensor>("MasterParamOut");
paddle::optional<const framework::Tensor&> master_param_opt =
paddle::none;
if (multi_precision) {
auto* master_param = context.Input<framework::Tensor>("MasterParam");
master_param_opt = *master_param;
}

if (grad_var->IsType<framework::Tensor>()) {
// sgd_dense
auto* grad = context.Input<framework::Tensor>("Grad");
phi::SGDDenseKernel<T>(
static_cast<const typename framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
*param, *learning_rate, *grad, master_param_opt, multi_precision,
param_out, master_param_out);
} else {
// sgd dense param sparse grad
auto* grad = context.Input<phi::SelectedRows>("Grad");
phi::SGDDenseParamSparseGradKernel<T>(
static_cast<const typename framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
*param, *learning_rate, *grad, master_param_opt, multi_precision,
param_out, master_param_out);
}
} else if (param_var->IsType<phi::SelectedRows>() &&
grad_var->IsType<phi::SelectedRows>() &&
platform::is_cpu_place(context.GetPlace())) {
// sgd sparse param sparse grad
auto* param = context.Input<phi::SelectedRows>("Param");
auto* param_out = context.Output<phi::SelectedRows>("ParamOut");
auto* master_param_out =
context.Output<phi::SelectedRows>("MasterParamOut");
paddle::optional<const phi::SelectedRows&> master_param_opt =
paddle::none;
if (multi_precision) {
auto* master_param = context.Input<phi::SelectedRows>("MasterParam");
master_param_opt = *master_param;
}
auto* grad = context.Input<phi::SelectedRows>("Grad");
phi::SGDSparseParamSparseGradKernel<T>(
static_cast<const typename framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
*param, *learning_rate, *grad, master_param_opt, multi_precision,
param_out, master_param_out);

} else {
PADDLE_THROW("gdc not support yet");
}
}

private:
std::unique_ptr<MomentumOpKernel<DeviceContext, T>> _momentum_op_kernel;
std::unique_ptr<SGDOpKernel<DeviceContext, T>> _sgd_op_kernel;
};

} // namespace operators
Expand Down
5 changes: 0 additions & 5 deletions paddle/fluid/operators/optimizers/sgd_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -166,8 +166,3 @@ REGISTER_OPERATOR(
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
ops::SGDOpInferVarType);
REGISTER_OP_CPU_KERNEL(
sgd, ops::SGDOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::SGDOpKernel<paddle::platform::CPUDeviceContext,
paddle::platform::bfloat16>,
ops::SGDOpKernel<paddle::platform::CPUDeviceContext, double>);
7 changes: 0 additions & 7 deletions paddle/fluid/operators/optimizers/sgd_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -166,10 +166,3 @@ class SGDOpKernel<platform::CUDADeviceContext, T>
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
sgd, ops::SGDOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::SGDOpKernel<paddle::platform::CUDADeviceContext, double>,
ops::SGDOpKernel<paddle::platform::CUDADeviceContext, plat::float16>);
6 changes: 6 additions & 0 deletions paddle/phi/core/kernel_registry.h
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,12 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> {
default_tensor_layout,
default_key.dtype(),
arg_type);
} else if (arg_type == std::type_index(typeid(
paddle::optional<const SelectedRows&>))) {
args_def->AppendInput(default_key.backend(),
default_tensor_layout,
default_key.dtype(),
arg_type);
} else if (arg_type ==
std::type_index(typeid(const std::vector<DenseTensor>&))) {
args_def->AppendInput(default_key.backend(),
Expand Down
1 change: 1 addition & 0 deletions paddle/phi/core/kernel_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -219,6 +219,7 @@ struct KernelImpl<Return (*)(DevCtx, Args...), kernel_fn> {

PT_SPECIALIZE_KernelCallHelper_FOR_INPUT(DenseTensor);
PT_SPECIALIZE_KernelCallHelper_FOR_OPTIONAL_INPUT(DenseTensor);
PT_SPECIALIZE_KernelCallHelper_FOR_OPTIONAL_INPUT(SelectedRows);
PT_SPECIALIZE_KernelCallHelper_FOR_MULTI_INPUT(DenseTensor);
PT_SPECIALIZE_KernelCallHelper_FOR_INPUT(SelectedRows);

Expand Down
213 changes: 213 additions & 0 deletions paddle/phi/kernels/cpu/sgd_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"

namespace phi {

template <typename T>
void sgd_dense_param_dense_grad_impl(const DenseTensor& param,
const DenseTensor& learning_rate,
const DenseTensor& grad,
DenseTensor* param_out) {
const auto sz = param_out->numel();
paddle::operators::jit::sgd_attr_t attr(1, sz, 1, sz, 1);
const T* lr = learning_rate.data<T>();
const T* param_data = param.data<T>();
const T* grad_data = grad.data<T>();
int64_t rows_idx = 0;
T* out_data = param_out->data<T>();

auto sgd =
paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>,
phi::CPUPlace>::Cache()
.At(attr);
sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
}

template <>
void sgd_dense_param_dense_grad_impl<phi::dtype::bfloat16>(
const DenseTensor& param,
const DenseTensor& learning_rate,
const DenseTensor& grad,
DenseTensor* param_out) {
auto p = EigenVector<phi::dtype::bfloat16>::Flatten(param);
auto g = EigenVector<phi::dtype::bfloat16>::Flatten(grad);
auto o = EigenVector<phi::dtype::bfloat16>::Flatten(*param_out);
const auto* lr = learning_rate.data<phi::dtype::bfloat16>();

o = p - lr[0] * g;
}

template <typename T>
void sgd_dense_param_sparse_grad_impl(const DenseTensor& param,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

按照编码规范,这些内部函数应该都是驼峰式命名,可能原来的同学写得不规范,可以顺便改下

const DenseTensor& learning_rate,
const SelectedRows& grad,
DenseTensor* param_out) {
const auto& grad_value = grad.value();
const auto& grad_rows = grad.rows();
const T* param_data = param.data<T>();
const T* grad_data = grad_value.data<T>();
const T* lr = learning_rate.data<T>();
const int64_t* rows_data = grad_rows.data();
T* out_data = param_out->data<T>();

paddle::operators::jit::sgd_attr_t attr;
attr.param_height = param_out->dims()[0];
attr.param_width = param_out->numel() / attr.param_height;
attr.grad_height = grad_rows.size(); // note: it is not grad->height()
attr.grad_width = grad_value.numel() / attr.grad_height;
attr.selected_rows_size = grad_rows.size();

auto sgd =
paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>,
phi::CPUPlace>::Cache()
.At(attr);
sgd(lr, param_data, grad_data, rows_data, out_data, &attr);
}

template <>
void sgd_dense_param_sparse_grad_impl<phi::dtype::bfloat16>(
const DenseTensor& param,
const DenseTensor& learning_rate,
const SelectedRows& grad,
DenseTensor* param_out) {
const auto& grad_value = grad.value();
const auto& grad_rows = grad.rows();
const auto grad_height = grad.height();
const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size());
const auto grad_width = grad_value.numel() / grad_val_height;

const auto* grad_data = grad_value.data<phi::dtype::bfloat16>();
auto* out_data = param_out->data<phi::dtype::bfloat16>();
const auto* lr = learning_rate.data<phi::dtype::bfloat16>();

for (size_t i = 0; i < grad_rows.size(); ++i) {
PADDLE_ENFORCE_LT(
grad_rows[i],
grad_height,
phi::errors::OutOfRange(
"Grad rows index value should be less than grad height."
"Got [%s], but expected less than [%s]",
grad_rows[i],
grad_height));
const int64_t row = grad_rows[i];
for (int64_t j = 0; j < grad_width; ++j) {
out_data[row * grad_width + j] -= lr[0] * grad_data[i * grad_width + j];
}
}
}

template <typename T, typename Context>
void SGDDenseKernel(const Context& dev_ctx,
const DenseTensor& param,
const DenseTensor& learning_rate,
const DenseTensor& grad,
paddle::optional<const DenseTensor&> master_param,
bool multi_precision,
DenseTensor* param_out,
DenseTensor* master_param_out) {
dev_ctx.template Alloc<T>(param_out);
sgd_dense_param_dense_grad_impl<T>(param, learning_rate, grad, param_out);
}

template <typename T, typename Context>
void SGDDenseParamSparseGradKernel(
const Context& dev_ctx,
const DenseTensor& param,
const DenseTensor& learning_rate,
const SelectedRows& grad,
paddle::optional<const DenseTensor&> master_param,
bool multi_precision,
DenseTensor* param_out,
DenseTensor* master_param_out) {
dev_ctx.template Alloc<T>(param_out);
sgd_dense_param_sparse_grad_impl<T>(param, learning_rate, grad, param_out);
}

template <typename T, typename Context>
void SGDSparseParamSparseGradKernel(
const Context& dev_ctx,
const SelectedRows& param,
const DenseTensor& learning_rate,
const SelectedRows& grad,
paddle::optional<const SelectedRows&> master_param,
bool multi_precision,
SelectedRows* param_out,
SelectedRows* master_param_out) {
// for distributed training, a sparse var may be empty,
// just skip updating.
if (grad.rows().size() == 0) {
return;
}

auto param_row_width = param.value().dims()[1];
auto grad_row_width = grad.value().dims()[1];
PADDLE_ENFORCE_EQ(
param_row_width,
grad_row_width,
phi::errors::InvalidArgument(
"The param_row in SgdOP should have the same size with grad_row. "
"But received param_row's width is [%s], and grad_row's width is "
"[%s]",
param_row_width,
grad_row_width));

const auto* lr = learning_rate.data<T>();
const auto* grad_data = grad.value().data<T>();
auto* out_data = param_out->mutable_value()->data<T>();
for (size_t i = 0; i < grad.rows().size(); i++) {
int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
PADDLE_ENFORCE_GE(
id_index,
static_cast<int64_t>(0),
phi::errors::InvalidArgument(
"The id in SgdOp should be >= 0. But recevied id_index is [%s]",
id_index));
for (int64_t j = 0; j < grad_row_width; j++) {
out_data[id_index * grad_row_width + j] -=
lr[0] * grad_data[i * grad_row_width + j];
}
}
}

} // namespace phi

PD_REGISTER_KERNEL(sgd,
CPU,
ALL_LAYOUT,
phi::SGDDenseKernel,
phi::dtype::bfloat16,
float,
double) {}

PD_REGISTER_KERNEL(sgd_dense_param_sparse_grad,
CPU,
ALL_LAYOUT,
phi::SGDDenseParamSparseGradKernel,
phi::dtype::bfloat16,
float,
double) {}

PD_REGISTER_KERNEL(sgd_sparse_param_sparse_grad,
CPU,
ALL_LAYOUT,
phi::SGDSparseParamSparseGradKernel,
phi::dtype::bfloat16,
float,
double) {}
Loading