-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Move sgd to phi #40045
Merged
Merged
Move sgd to phi #40045
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
5ad020e
move sgd to phi; test=develop
phlrain 5b5941c
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
phlrain 26aac8d
update
phlrain a4bccde
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
phlrain 943dede
add sgd kernel; test=develop
phlrain d3dcbd3
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
phlrain File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/phi/kernels/sgd_kernel.h" | ||
#include "paddle/fluid/operators/jit/kernels.h" | ||
#include "paddle/phi/backends/cpu/cpu_context.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/funcs/eigen/common.h" | ||
|
||
namespace phi { | ||
|
||
template <typename T> | ||
void sgd_dense_param_dense_grad_impl(const DenseTensor& param, | ||
const DenseTensor& learning_rate, | ||
const DenseTensor& grad, | ||
DenseTensor* param_out) { | ||
const auto sz = param_out->numel(); | ||
paddle::operators::jit::sgd_attr_t attr(1, sz, 1, sz, 1); | ||
const T* lr = learning_rate.data<T>(); | ||
const T* param_data = param.data<T>(); | ||
const T* grad_data = grad.data<T>(); | ||
int64_t rows_idx = 0; | ||
T* out_data = param_out->data<T>(); | ||
|
||
auto sgd = | ||
paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>, | ||
phi::CPUPlace>::Cache() | ||
.At(attr); | ||
sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr); | ||
} | ||
|
||
template <> | ||
void sgd_dense_param_dense_grad_impl<phi::dtype::bfloat16>( | ||
const DenseTensor& param, | ||
const DenseTensor& learning_rate, | ||
const DenseTensor& grad, | ||
DenseTensor* param_out) { | ||
auto p = EigenVector<phi::dtype::bfloat16>::Flatten(param); | ||
auto g = EigenVector<phi::dtype::bfloat16>::Flatten(grad); | ||
auto o = EigenVector<phi::dtype::bfloat16>::Flatten(*param_out); | ||
const auto* lr = learning_rate.data<phi::dtype::bfloat16>(); | ||
|
||
o = p - lr[0] * g; | ||
} | ||
|
||
template <typename T> | ||
void sgd_dense_param_sparse_grad_impl(const DenseTensor& param, | ||
const DenseTensor& learning_rate, | ||
const SelectedRows& grad, | ||
DenseTensor* param_out) { | ||
const auto& grad_value = grad.value(); | ||
const auto& grad_rows = grad.rows(); | ||
const T* param_data = param.data<T>(); | ||
const T* grad_data = grad_value.data<T>(); | ||
const T* lr = learning_rate.data<T>(); | ||
const int64_t* rows_data = grad_rows.data(); | ||
T* out_data = param_out->data<T>(); | ||
|
||
paddle::operators::jit::sgd_attr_t attr; | ||
attr.param_height = param_out->dims()[0]; | ||
attr.param_width = param_out->numel() / attr.param_height; | ||
attr.grad_height = grad_rows.size(); // note: it is not grad->height() | ||
attr.grad_width = grad_value.numel() / attr.grad_height; | ||
attr.selected_rows_size = grad_rows.size(); | ||
|
||
auto sgd = | ||
paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>, | ||
phi::CPUPlace>::Cache() | ||
.At(attr); | ||
sgd(lr, param_data, grad_data, rows_data, out_data, &attr); | ||
} | ||
|
||
template <> | ||
void sgd_dense_param_sparse_grad_impl<phi::dtype::bfloat16>( | ||
const DenseTensor& param, | ||
const DenseTensor& learning_rate, | ||
const SelectedRows& grad, | ||
DenseTensor* param_out) { | ||
const auto& grad_value = grad.value(); | ||
const auto& grad_rows = grad.rows(); | ||
const auto grad_height = grad.height(); | ||
const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size()); | ||
const auto grad_width = grad_value.numel() / grad_val_height; | ||
|
||
const auto* grad_data = grad_value.data<phi::dtype::bfloat16>(); | ||
auto* out_data = param_out->data<phi::dtype::bfloat16>(); | ||
const auto* lr = learning_rate.data<phi::dtype::bfloat16>(); | ||
|
||
for (size_t i = 0; i < grad_rows.size(); ++i) { | ||
PADDLE_ENFORCE_LT( | ||
grad_rows[i], | ||
grad_height, | ||
phi::errors::OutOfRange( | ||
"Grad rows index value should be less than grad height." | ||
"Got [%s], but expected less than [%s]", | ||
grad_rows[i], | ||
grad_height)); | ||
const int64_t row = grad_rows[i]; | ||
for (int64_t j = 0; j < grad_width; ++j) { | ||
out_data[row * grad_width + j] -= lr[0] * grad_data[i * grad_width + j]; | ||
} | ||
} | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SGDDenseKernel(const Context& dev_ctx, | ||
const DenseTensor& param, | ||
const DenseTensor& learning_rate, | ||
const DenseTensor& grad, | ||
paddle::optional<const DenseTensor&> master_param, | ||
bool multi_precision, | ||
DenseTensor* param_out, | ||
DenseTensor* master_param_out) { | ||
dev_ctx.template Alloc<T>(param_out); | ||
sgd_dense_param_dense_grad_impl<T>(param, learning_rate, grad, param_out); | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SGDDenseParamSparseGradKernel( | ||
const Context& dev_ctx, | ||
const DenseTensor& param, | ||
const DenseTensor& learning_rate, | ||
const SelectedRows& grad, | ||
paddle::optional<const DenseTensor&> master_param, | ||
bool multi_precision, | ||
DenseTensor* param_out, | ||
DenseTensor* master_param_out) { | ||
dev_ctx.template Alloc<T>(param_out); | ||
sgd_dense_param_sparse_grad_impl<T>(param, learning_rate, grad, param_out); | ||
} | ||
|
||
template <typename T, typename Context> | ||
void SGDSparseParamSparseGradKernel( | ||
const Context& dev_ctx, | ||
const SelectedRows& param, | ||
const DenseTensor& learning_rate, | ||
const SelectedRows& grad, | ||
paddle::optional<const SelectedRows&> master_param, | ||
bool multi_precision, | ||
SelectedRows* param_out, | ||
SelectedRows* master_param_out) { | ||
// for distributed training, a sparse var may be empty, | ||
// just skip updating. | ||
if (grad.rows().size() == 0) { | ||
return; | ||
} | ||
|
||
auto param_row_width = param.value().dims()[1]; | ||
auto grad_row_width = grad.value().dims()[1]; | ||
PADDLE_ENFORCE_EQ( | ||
param_row_width, | ||
grad_row_width, | ||
phi::errors::InvalidArgument( | ||
"The param_row in SgdOP should have the same size with grad_row. " | ||
"But received param_row's width is [%s], and grad_row's width is " | ||
"[%s]", | ||
param_row_width, | ||
grad_row_width)); | ||
|
||
const auto* lr = learning_rate.data<T>(); | ||
const auto* grad_data = grad.value().data<T>(); | ||
auto* out_data = param_out->mutable_value()->data<T>(); | ||
for (size_t i = 0; i < grad.rows().size(); i++) { | ||
int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false); | ||
PADDLE_ENFORCE_GE( | ||
id_index, | ||
static_cast<int64_t>(0), | ||
phi::errors::InvalidArgument( | ||
"The id in SgdOp should be >= 0. But recevied id_index is [%s]", | ||
id_index)); | ||
for (int64_t j = 0; j < grad_row_width; j++) { | ||
out_data[id_index * grad_row_width + j] -= | ||
lr[0] * grad_data[i * grad_row_width + j]; | ||
} | ||
} | ||
} | ||
|
||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(sgd, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::SGDDenseKernel, | ||
phi::dtype::bfloat16, | ||
float, | ||
double) {} | ||
|
||
PD_REGISTER_KERNEL(sgd_dense_param_sparse_grad, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::SGDDenseParamSparseGradKernel, | ||
phi::dtype::bfloat16, | ||
float, | ||
double) {} | ||
|
||
PD_REGISTER_KERNEL(sgd_sparse_param_sparse_grad, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::SGDSparseParamSparseGradKernel, | ||
phi::dtype::bfloat16, | ||
float, | ||
double) {} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
按照编码规范,这些内部函数应该都是驼峰式命名,可能原来的同学写得不规范,可以顺便改下