Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Port fully connected operator #3927

Merged
merged 17 commits into from
Sep 18, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 197 additions & 0 deletions paddle/operators/fc_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"

namespace paddle {
namespace operators {

class FCOp : public NetOp {
public:
FCOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
PADDLE_ENFORCE(!Inputs("X").empty(),
"Inputs(X) of FCOp should not be null.");
PADDLE_ENFORCE(!Inputs("W").empty(),
"Inputs(W) of FCOp should not be null.");
PADDLE_ENFORCE(!Outputs("MulOut").empty(),
"Outputs(MulOut) of FCOp should not be null.");
PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName,
"Output(Out) of FCOp should not be null.");

auto x = Inputs("X");
auto w = Inputs("W");
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the following code only use x.size() and w.size()
so here can use

size_t x_size = Inputs("X").size();
size_t w_size = Inputs("W").size();

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

X and W are duplicatable inputs, and x[i] and w[i] are used in line 73 which creates mul operators. w.size() is only used in the PADDLE_ENFORCE_EQ statement in line 39.

auto mul_out = Outputs("MulOut");
PADDLE_ENFORCE_EQ(
x.size(), w.size(),
"The size of inputs X(%d) should be the same as that of weights W(%d).",
x.size(), w.size());
PADDLE_ENFORCE_EQ(mul_out.size(), x.size(),
"The size of intermediate mul_out(%d) should be the same "
"as that of inputs X(%d).",
mul_out.size(), x.size());

size_t n = x.size();
PADDLE_ENFORCE_GE(n, static_cast<size_t>(1),
"The size of inputs X(%d) should be no less than 1.", n);

auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims");

// Set all values or set no values (use the default value)
if (!x_num_col_dims.empty()) {
PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
"The size of attribute xNumColDims(%d) should be the "
"same as that of inputs X(%d).",
x_num_col_dims.size(), n);
} else {
x_num_col_dims.resize(n);
for (size_t i = 0; i < n; i++) {
x_num_col_dims[i] = 1;
}
}

// mul_out[i] = X[i] * W[i]
for (size_t i = 0; i < n; i++) {
framework::AttributeMap mul_attr;
mul_attr["x_num_col_dims"] = static_cast<int>(x_num_col_dims[i]);
mul_attr["y_num_col_dims"] = static_cast<int>(1);
AppendOp(
framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}},
{{"Out", {mul_out[i]}}}, mul_attr));
}

// sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
auto sum_out = mul_out[0];
if (n > 1) {
PADDLE_ENFORCE_NE(Output("SumOut"), framework::kEmptyVarName,
"Output(SumOut) of FCOp should not be null when the "
"size of Inputs(X) > 1.");

sum_out = Output("SumOut");
AppendOp(framework::OpRegistry::CreateOp("sum", {{"X", {mul_out}}},
{{"Out", {sum_out}}}, {}));
} else {
if (Output("SumOut") != framework::kEmptyVarName) {
this->Rename(Output("SumOut"), framework::kEmptyVarName);
}
}

// add_out = sum_out + b
auto b = Input("B");
auto add_out = sum_out;
if (b != framework::kEmptyVarName) {
PADDLE_ENFORCE_NE(
Output("AddOut"), framework::kEmptyVarName,
"Output(AddOut) of FCOp should not be null when Input(B) is set.");

add_out = Output("AddOut");
AppendOp(framework::OpRegistry::CreateOp(
"rowwise_add", {{"X", {sum_out}}, {"b", {Input("B")}}},
{{"Out", {add_out}}}, {}));
} else {
if (Output("AddOut") != framework::kEmptyVarName) {
this->Rename(Output("AddOut"), framework::kEmptyVarName);
}
}

auto activation = Attr<std::string>("activation");
AppendOp(framework::OpRegistry::CreateOp(activation, {{"X", {add_out}}},
{{"Y", {Output("Out")}}}, {}));
CompleteAddOp(false);
}
};

class FCOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(A vector of Tensors) each input Tensor can be of arbitrary "
"dimension, and will be reshaped to a 2-D matrix of size "
"(minibatch, number_of_input_features) according to attribute "
"xNumColDims.")
.AsDuplicable();
AddInput("W",
"(A vector of Tensors) the weights of FC operator, a "
"vector of 2-D matrix of size "
"(number_of_input_features, number_of_neurons).")
.AsDuplicable();
AddInput("B",
"(Tensor) the bias of FC operator, a 1-D vector of size "
"number_of_neurons.");

AddOutput("Out",
"(Tensor) the activated output matrix of FC operator, a 2-D "
"matrix of size (minibatch, number_of_neurons).");
AddOutput("MulOut",
"(A vector of Tensors) the intermediate outputs of FC operator, "
"each Tensor saving the product of X_i * W_i.")
.AsIntermediate()
.AsDuplicable();
AddOutput(
"SumOut",
"(Tensor) the intermediate output of FC operator, "
"saving the sum of the products of X and W, that is sum{X_i * W_i}.")
.AsIntermediate();
AddOutput("AddOut",
"(Tensor) the non-actived output of FC operator, "
"saving sum{X_i * W_i} + B.")
.AsIntermediate();
AddAttr<std::string>(
"activation",
"(string, default identity) the activation type of FC operator.")
.SetDefault("identity")
.InEnum({"identity", "sigmoid", "softmax"});
AddAttr<std::vector<int>>(
"xNumColDims",
"(std::vector<int>) The inputs Tensors of FC operator can be of "
"more than 2 dimensions. In that case, each input Tensor `X_i` will be "
"reshaped to a 2-D matrix. The matrix's first dimension "
"(the length of column) will be the product of `X_i`'s last "
"`xNumColDims_i` dimensions, that is "
"`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. "
"The matrix's second dimension (the length of row) will be the product "
"of `X_i`'s first `rank - xNumColDims_i` dimensions, that is "
"`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)")
.SetDefault(std::vector<int>{});

AddComment(R"DOC(
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
in Convolutional Neural Networks. Neurons in a fully connected layer have
full connections to all activations in the previous layer.
It computes an inner product of a set of
learned weights with a matrix multiplication followed by a bias offset
(optionally).

Equation:
Out = Act(sum_n{X_i * W_i} + B)

where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K),
usually M is the minibatch size and K is the number of input features.
W_i is a 2-D matrix of size (K x N), where N means the number of neurons
in the fully connected layer. B is a 1-D vector of size N.
Thus, the output Out is a 2-D matrix of size (M x N).
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
)DOC");
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Very good comments.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks.

};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);
9 changes: 5 additions & 4 deletions paddle/operators/identity_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of identity operator.");
AddOutput("Out", "The output tensor of identity operator.");
AddOutput("Y", "The output tensor of identity operator.");
AddComment(R"DOC(
The identity operator is an alias of the scale operator
with the attribute scale fixed to 1.0.
Expand All @@ -44,12 +44,13 @@ class IdentityOp : public NetOp {
: NetOp(type, inputs, outputs, attrs) {
PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName,
"Input(X) of IdentityOp should not be null.");
PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName,
"Output(Out) of IdentityOp should not be null.");
PADDLE_ENFORCE_NE(Output("Y"), framework::kEmptyVarName,
"Output(Y) of IdentityOp should not be null.");

AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}},
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Y")}}},
{{"scale", static_cast<AttrType>(1)}}));
CompleteAddOp(false);
}
};

Expand Down
2 changes: 1 addition & 1 deletion paddle/operators/minus_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ class MinusGradOp : public NetOp {

// x_grad = out_grad
AppendOp(framework::OpRegistry::CreateOp("identity", {{"X", {out_grad}}},
{{"Out", {x_grad}}}, {}));
{{"Y", {x_grad}}}, {}));

framework::AttributeMap scale_attr;
scale_attr["scale"] = static_cast<AttrType>(-1);
Expand Down
2 changes: 1 addition & 1 deletion paddle/pybind/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
${GLOB_OP_LIB})
Expand Down
35 changes: 20 additions & 15 deletions python/paddle/v2/framework/tests/op_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,17 +28,18 @@ def create_op(scope, op_type, inputs, outputs, attrs):
if out_name in outputs:
kwargs[out_name] = []
if out_dup:
sub_in = outputs[out_name]
for sub_in_name, _ in sub_in:
var = scope.new_var(sub_in_name)
kwargs[out_name].append(sub_in_name)
sub_out = outputs[out_name]
for sub_out_name, _ in sub_out:
var = scope.new_var(sub_out_name)
kwargs[out_name].append(sub_out_name)
else:
var = scope.new_var(out_name)
kwargs[out_name].append(out_name)

for attr_name in Operator.get_op_attr_names(op_type):
if attr_name in attrs:
kwargs[attr_name] = attrs[attr_name]

return Operator(op_type, **kwargs)


Expand Down Expand Up @@ -172,8 +173,9 @@ class OpTest(unittest.TestCase):
def check_output_with_place(self, place):
self.scope = core.Scope()
op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_outputs = self.outputs if hasattr(self, "outputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict()
self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs,
self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
op_attrs)
if isinstance(place, core.GPUPlace) and not self.op.support_gpu():
return
Expand All @@ -185,21 +187,23 @@ def check_output_with_place(self, place):
for out_name, out_dup in Operator.get_op_outputs(self.op.type()):
if out_dup:
sub_out = self.outputs[out_name]
for sub_out_name in sub_out:
for sub_out_name, sub_out_array in sub_out:
actual = np.array(
self.scope.find_var(sub_out_name).get_tensor())
expect = sub_out[sub_out_name]
expect = sub_out_array
self.assertTrue(
np.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
"output name: " + out_name + " has diff")
else:
actual = np.array(self.scope.find_var(out_name).get_tensor())
expect = self.outputs[out_name]
self.assertTrue(
np.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
var = self.scope.find_var(out_name)
if var is not None:
actual = np.array(var.get_tensor())
expect = self.outputs[out_name]
self.assertTrue(
np.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + " has diff")

def check_output(self):
places = [core.CPUPlace()]
Expand Down Expand Up @@ -234,8 +238,9 @@ def check_grad(self,
max_relative_error=0.005):
self.scope = core.Scope()
op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_outputs = self.outputs if hasattr(self, "outputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict()
self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs,
self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
op_attrs)
if no_grad_set is None:
no_grad_set = set()
Expand Down
62 changes: 62 additions & 0 deletions python/paddle/v2/framework/tests/test_fc_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import unittest
import numpy as np
from op_test import OpTest


class TestFCOp1(OpTest):
def setUp(self):
x0 = np.random.random((16, 32)).astype("float32")
w0 = np.random.random((32, 10)).astype("float32")

mul_out0 = np.dot(x0, w0)
identity_out = mul_out0

self.op_type = "fc"
self.inputs = {"X": [("X0", x0)], "W": [("W0", w0)]}
self.outputs = {"MulOut": [("MulOut0", mul_out0)], "Out": identity_out}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(["X0", "W0"], "Out", max_relative_error=0.01)


class TestFCOp2(OpTest):
def setUp(self):
x0 = np.random.random((16, 4, 8)).astype("float32")
x1 = np.random.random((4, 4, 32)).astype("float32")
w0 = np.random.random((32, 10)).astype("float32")
w1 = np.random.random((32, 10)).astype("float32")
b = np.random.random(10).astype("float32")

mul_out0 = np.dot(x0.reshape(16, 4 * 8), w0)
mul_out1 = np.dot(x1.reshape(4 * 4, 32), w1)
sum_out = mul_out0 + mul_out1
add_out = np.add(sum_out, b)
sigmoid_out = 1 / (1 + np.exp(-add_out))

self.op_type = "fc"
self.inputs = {
"X": [("X0", x0), ("X1", x1)],
"W": [("W0", w0), ("W1", w1)],
"B": b
}
self.attrs = {"xNumColDims": [1, 2], "activation": "sigmoid"}
self.outputs = {
"MulOut": [("MulOut0", mul_out0), ("MulOut1", mul_out1)],
"SumOut": sum_out,
"AddOut": add_out,
"Out": sigmoid_out
}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(
["X0", "X1", "W0", "W1", "B"], "Out", max_relative_error=0.01)


if __name__ == '__main__':
unittest.main()
4 changes: 2 additions & 2 deletions python/paddle/v2/framework/tests/test_identity_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,13 @@ class TestIdentityOp(OpTest):
def setUp(self):
self.op_type = "identity"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.outputs = {'Out': self.inputs['X']}
self.outputs = {'Y': self.inputs['X']}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Out')
self.check_grad(['X'], 'Y')


if __name__ == "__main__":
Expand Down