Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor the forward implementation of reshape npu op #38748

Merged
merged 3 commits into from
Jan 10, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
99 changes: 85 additions & 14 deletions paddle/fluid/operators/reshape_op_npu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ limitations under the License. */
#include <string>

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"

namespace paddle {
Expand All @@ -25,23 +26,93 @@ template <typename DeviceContext, typename T>
class Reshape2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto place = ctx.GetPlace();
auto* x = ctx.Input<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
auto list_new_shape_tensor =
ctx.MultiInput<framework::Tensor>("ShapeTensor");
if (list_new_shape_tensor.size() > 0) {
PADDLE_THROW(platform::errors::Unimplemented(
"Input(ShapeTensor) is not supported on NPU."));

std::vector<int32_t> target_shape_vector;
auto shape_tensor_vector = ctx.MultiInput<framework::Tensor>("ShapeTensor");
if (shape_tensor_vector.size() > 0) {
for (auto* shape_tensor : shape_tensor_vector) {
PADDLE_ENFORCE_EQ(
shape_tensor->dims().size(), 1,
platform::errors::InvalidArgument(
"If the element type of 'shape' in Reshape Op is Tensor, "
"the element's shape must be [1]. But received the element's "
"shape is [%d]",
shape_tensor->dims().size()));

target_shape_vector.push_back(GetDataFromTensor<int>(shape_tensor)[0]);
}
} else {
auto* shape_tensor = ctx.HasInput("Shape")
? ctx.Input<framework::LoDTensor>("Shape")
: nullptr;
if (shape_tensor) {
target_shape_vector = GetDataFromTensor<int>(shape_tensor);
} else {
target_shape_vector = ctx.Attr<std::vector<int>>("shape");
PADDLE_ENFORCE_GT(
target_shape_vector.size(), 0,
platform::errors::InvalidArgument(
"The length of shape attribute should be larger than 0 when "
"input ShapeTensor and Shape are empty!"));
}
}
PADDLE_ENFORCE_EQ(ctx.Input<framework::LoDTensor>("Shape"), nullptr,
platform::errors::Unimplemented(
"Input(Shape) is not supported on NPU."));
auto shape = out->dims();
out->mutable_data(ctx.GetPlace(), x->type());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
out->Resize(shape);

int num_negative =
std::count(target_shape_vector.begin(), target_shape_vector.end(), -1);
PADDLE_ENFORCE_LE(
num_negative, 1,
platform::errors::InvalidArgument(
"The max number of -1 in shape attribute or shape tensor is 1 "
"but received %d.",
num_negative));
auto it_zero =
std::find(target_shape_vector.begin(), target_shape_vector.end(), 0);
if (it_zero != target_shape_vector.end()) {
int x_rank = x->dims().size();
for (size_t i = 0; i < target_shape_vector.size(); i++) {
if (target_shape_vector[i] == 0) {
PADDLE_ENFORCE_LT(
i, x_rank,
platform::errors::InvalidArgument(
"The index of 0 in shape attribute or shape tensor",
"should be less than input dim size, ",
"but the index is %d and input dim size is %d", i, x_rank));
target_shape_vector[i] = x->dims().at(i);
}
}
}

auto it =
std::find(target_shape_vector.begin(), target_shape_vector.end(), -1);
if (it != target_shape_vector.end()) {
auto ddim_out_vec = framework::vectorize(x->dims());
int ddim_out_product = std::accumulate(
ddim_out_vec.begin(), ddim_out_vec.end(), 1, std::multiplies<int>());
int reshape_out_product = std::accumulate(target_shape_vector.begin(),
target_shape_vector.end(), -1,
std::multiplies<int>());
int index = std::distance(target_shape_vector.begin(), it);
target_shape_vector[index] = ddim_out_product / reshape_out_product;
}

auto out_dims = framework::make_ddim(target_shape_vector);
out->mutable_data<T>(out_dims, place);

NpuOpRunner runner;
// the shape input must be on the host side
runner.SetType("Reshape")
.AddInput(*x)
.AddInput(std::vector<int32_t>(target_shape_vector))
.AddOutput(*out)
.AddAttr("axis", 0)
.AddAttr("num_axes", -1);
runner.Run(stream);
}
};

Expand Down