Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

new api/op repeat_interleave #37981

Merged
merged 1 commit into from
Dec 17, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 174 additions & 0 deletions paddle/fluid/operators/repeat_interleave_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/repeat_interleave_op.h"
#include <memory>

namespace paddle {
namespace operators {

using framework::Tensor;

class RepeatInterleaveOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Input(X) of RepeatInterleaveOp should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::InvalidArgument(
"Output(Out) of RepeatInterleaveOp should not be null."));

auto input_dim = ctx->GetInputDim("X");
auto dim = ctx->Attrs().Get<int>("dim");
auto output_dim = framework::vectorize(input_dim);
PADDLE_ENFORCE_EQ(
dim < input_dim.size() && dim >= (0 - input_dim.size()), true,
platform::errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_dim.size(), input_dim.size() - 1, dim));

auto repeats = ctx->Attrs().Get<int>("Repeats");
if (ctx->HasInput("RepeatsTensor")) {
auto repeats_dim = ctx->GetInputDim("RepeatsTensor");

PADDLE_ENFORCE_EQ(
repeats_dim.size() == 1 ||
(repeats_dim.size() == 2 && repeats_dim[1] == 1),
true, platform::errors::InvalidArgument(
"The 'shape' of Input(RepeatsTensor) must be 1-D tensor. "
"But received: the 'shape' of Input(Index) is [%s], "
"the dimension of Input(Index) is [%d].",
repeats_dim, repeats_dim.size()));

PADDLE_ENFORCE_EQ(repeats_dim[0] != 0, true,
platform::errors::InvalidArgument(
"The length of Input(RepeatsTensor) can't be 0."));

if (dim < 0) {
dim += input_dim.size();
}
output_dim[dim] = -1;
} else if (repeats > 0) {
output_dim[dim] = input_dim[dim] * repeats;
}
VLOG(3) << "infershap out " << output_dim[dim];
ctx->SetOutputDim("Out", framework::make_ddim(output_dim));
auto type = ctx->GetInputsVarType("X")[0];
if (type == framework::proto::VarType::LOD_TENSOR) {
ctx->ShareLoD("X", /*->*/ "Out");
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};

class RepeatInterleaveGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) should be not null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::InvalidArgument(
"Output(X@GRAD) should be not null."));

ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};

class RepeatInterleaveOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) the input tensor.");
AddInput("RepeatsTensor",
"the 1-D tensor containing the repeats alongsize the axis.")
.AsDispensable();
AddOutput("Out", "the output tensor.");
AddAttr<int>("Repeats", "the number of repetitions for each element.")
.SetDefault(0);
AddAttr<int>("dim", "the dimension in which we repeat.").SetDefault(0);
AddComment(R"DOC(
Returns a new tensor which repeats the input tensor
along dimension dim using the entries in repeats which
is a Tensor or int.

The returned tensor has the same number of dimensions
as the original tensor (input), except along the given axis.
)DOC");
}
};

template <typename T>
class RepeatInterleaveGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("repeat_interleave_grad");

op->SetInput("X", this->Input("X"));
op->SetInput("RepeatsTensor", this->Input("RepeatsTensor"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(RepeatInterleaveGradNoNeedBufferVarsInferer,
"X");
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(repeat_interleave, ops::RepeatInterleaveOp,
ops::RepeatInterleaveOpMaker,
ops::RepeatInterleaveGradMaker<paddle::framework::OpDesc>,
ops::RepeatInterleaveGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(repeat_interleave_grad, ops::RepeatInterleaveGradOp,
ops::RepeatInterleaveGradNoNeedBufferVarsInferer);
REGISTER_OP_CPU_KERNEL(
repeat_interleave,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, float>,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, double>,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, int>,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
repeat_interleave_grad,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext,
int64_t>);
Loading