-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add paddle.gcd and paddle.lcm #37819
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import unittest | ||
import numpy as np | ||
import paddle | ||
import paddle.fluid as fluid | ||
import paddle.fluid.core as core | ||
from paddle.fluid import Program, program_guard | ||
from op_test import OpTest | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class TestGcdAPI(unittest.TestCase): | ||
def setUp(self): | ||
self.x_np = 12 | ||
self.y_np = 20 | ||
self.x_shape = [1] | ||
self.y_shape = [1] | ||
|
||
def test_static_graph(self): | ||
startup_program = fluid.Program() | ||
train_program = fluid.Program() | ||
with fluid.program_guard(startup_program, train_program): | ||
x = fluid.data(name='input1', dtype='int32', shape=self.x_shape) | ||
y = fluid.data(name='input2', dtype='int32', shape=self.y_shape) | ||
out = paddle.gcd(x, y) | ||
|
||
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( | ||
) else fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
res = exe.run(fluid.default_main_program(), | ||
feed={'input1': self.x_np, | ||
'input2': self.y_np}, | ||
fetch_list=[out]) | ||
self.assertTrue((np.array(res[0]) == np.gcd(self.x_np, self.y_np) | ||
).all()) | ||
|
||
def test_dygraph(self): | ||
paddle.disable_static() | ||
x = paddle.to_tensor(self.x_np) | ||
y = paddle.to_tensor(self.y_np) | ||
result = paddle.gcd(x, y) | ||
self.assertEqual( | ||
np.allclose(np.gcd(self.x_np, self.y_np), result.numpy()), True) | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class TestGcdAPI2(TestGcdAPI): | ||
def setUp(self): | ||
self.x_np = np.arange(6).astype(np.int32) | ||
self.y_np = np.array([20]).astype(np.int32) | ||
self.x_shape = [6] | ||
self.y_shape = [1] | ||
|
||
|
||
class TestGcdAPI3(TestGcdAPI): | ||
def setUp(self): | ||
self.x_np = 0 | ||
self.y_np = 20 | ||
self.x_shape = [1] | ||
self.y_shape = [1] | ||
|
||
|
||
class TestGcdAPI4(TestGcdAPI): | ||
def setUp(self): | ||
self.x_np = 0 | ||
self.y_np = 0 | ||
self.x_shape = [1] | ||
self.y_shape = [1] | ||
|
||
|
||
class TestGcdAPI5(TestGcdAPI): | ||
def setUp(self): | ||
self.x_np = 12 | ||
self.y_np = -20 | ||
self.x_shape = [1] | ||
self.y_shape = [1] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import unittest | ||
import numpy as np | ||
import paddle | ||
import paddle.fluid as fluid | ||
import paddle.fluid.core as core | ||
from paddle.fluid import Program, program_guard | ||
from op_test import OpTest | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class TestLcmAPI(unittest.TestCase): | ||
def setUp(self): | ||
self.x_np = 12 | ||
self.y_np = 20 | ||
self.x_shape = [1] | ||
self.y_shape = [1] | ||
|
||
def test_static_graph(self): | ||
startup_program = fluid.Program() | ||
train_program = fluid.Program() | ||
with fluid.program_guard(startup_program, train_program): | ||
x1 = fluid.data(name='input1', dtype='int32', shape=self.x_shape) | ||
x2 = fluid.data(name='input2', dtype='int32', shape=self.y_shape) | ||
out = paddle.lcm(x1, x2) | ||
|
||
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( | ||
) else fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
res = exe.run(fluid.default_main_program(), | ||
feed={'input1': self.x_np, | ||
'input2': self.y_np}, | ||
fetch_list=[out]) | ||
self.assertTrue((np.array(res[0]) == np.lcm(self.x_np, self.y_np) | ||
).all()) | ||
|
||
def test_dygraph(self): | ||
paddle.disable_static() | ||
x1 = paddle.to_tensor(self.x_np) | ||
x2 = paddle.to_tensor(self.y_np) | ||
result = paddle.lcm(x1, x2) | ||
self.assertEqual( | ||
np.allclose(np.lcm(self.x_np, self.y_np), result.numpy()), True) | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class TestLcmAPI2(TestLcmAPI): | ||
def setUp(self): | ||
self.x_np = np.arange(6).astype(np.int32) | ||
self.y_np = np.array([20]).astype(np.int32) | ||
self.x_shape = [6] | ||
self.y_shape = [1] | ||
|
||
|
||
class TestLcmAPI3(TestLcmAPI): | ||
def setUp(self): | ||
self.x_np = 0 | ||
self.y_np = 20 | ||
self.x_shape = [1] | ||
self.y_shape = [1] | ||
|
||
|
||
class TestLcmAPI4(TestLcmAPI): | ||
def setUp(self): | ||
self.x_np = 0 | ||
self.y_np = 0 | ||
self.x_shape = [1] | ||
self.y_shape = [1] | ||
|
||
|
||
class TestLcmAPI5(TestLcmAPI): | ||
def setUp(self): | ||
self.x_np = 12 | ||
self.y_np = -20 | ||
self.x_shape = [1] | ||
self.y_shape = [1] |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2725,6 +2725,139 @@ def deg2rad(x, name=None): | |
type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale}) | ||
return out | ||
|
||
def gcd(x, y, name=None): | ||
""" | ||
Computes the element-wise greatest common divisor (GCD) of input |x| and |y|. | ||
Both x and y must have integer types. | ||
|
||
Note: | ||
gcd(0,0)=0, gcd(0, y)=|y| | ||
|
||
Args: | ||
x, y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. x, y 各起一行写会好一点 |
||
If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output). | ||
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. | ||
|
||
Returns: | ||
out (Tensor): An N-D Tensor, the data type is the same with input. | ||
|
||
Examples: | ||
.. code-block:: python | ||
|
||
import paddle | ||
import numpy as np | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里不引入 numpy |
||
|
||
x1 = paddle.to_tensor(12) | ||
x2 = paddle.to_tensor(20) | ||
paddle.gcd(x1, x2) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [4]) | ||
|
||
x3 = paddle.to_tensor(np.arange(6)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. x3 = paddle.arange(6) |
||
paddle.gcd(x3, x2) | ||
# Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [20, 1 , 2 , 1 , 4 , 5]) | ||
|
||
x4 = paddle.to_tensor(0) | ||
paddle.gcd(x4, x2) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [20]) | ||
|
||
paddle.gcd(x4, x4) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [0]) | ||
|
||
x5 = paddle.to_tensor(-20) | ||
paddle.gcd(x1, x5) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [4]) | ||
""" | ||
shape = paddle.broadcast_shape(x.shape, y.shape) | ||
x = paddle.broadcast_to(x, shape) | ||
y = paddle.broadcast_to(y, shape) | ||
x = paddle.abs(x) | ||
y = paddle.abs(y) | ||
|
||
def _gcd_cond_fn(x, y): | ||
return paddle.any(y != 0) | ||
|
||
def _gcd_body_fn(x, y): | ||
# paddle.mod will raise an error when any element of y is 0. To avoid | ||
# that, we change those zeros to ones. Their values don't matter because | ||
# they won't be used. | ||
y_not_equal_0 = (y != 0) | ||
y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype)) | ||
x, y = (paddle.where(y_not_equal_0, y, x), | ||
paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype))) | ||
return (paddle.where(x < y, y, x), paddle.where(x < y, x, y)) | ||
|
||
if in_dygraph_mode(): | ||
while _gcd_cond_fn(x, y): | ||
x, y = _gcd_body_fn(x, y) | ||
|
||
return x | ||
else: | ||
check_variable_and_dtype(x, 'x', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd') | ||
check_variable_and_dtype(y, 'y', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd') | ||
out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y]) | ||
return out | ||
|
||
def lcm(x, y, name=None): | ||
""" | ||
Computes the element-wise least common multiple (LCM) of input |x| and |y|. | ||
Both x and y must have integer types. | ||
|
||
Note: | ||
lcm(0,0)=0, lcm(0, y)=0 | ||
|
||
Args: | ||
x, y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 同上 |
||
If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output). | ||
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. | ||
|
||
Returns: | ||
out (Tensor): An N-D Tensor, the data type is the same with input. | ||
|
||
Examples: | ||
.. code-block:: python | ||
|
||
import paddle | ||
import numpy as np | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 同上 |
||
|
||
x1 = paddle.to_tensor(12) | ||
x2 = paddle.to_tensor(20) | ||
paddle.lcm(x1, x2) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [60]) | ||
|
||
x3 = paddle.to_tensor(np.arange(6)) | ||
paddle.lcm(x3, x2) | ||
# Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [0, 20, 20, 60, 20, 20]) | ||
|
||
x4 = paddle.to_tensor(0) | ||
paddle.lcm(x4, x2) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [0]) | ||
|
||
paddle.lcm(x4, x4) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [0]) | ||
|
||
x5 = paddle.to_tensor(-20) | ||
paddle.lcm(x1, x5) | ||
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, | ||
# [60]) | ||
""" | ||
d = paddle.gcd(x, y) | ||
# paddle.mod will raise an error when any element of y is 0. To avoid | ||
# that, we change those zeros to ones. Their values don't matter because | ||
# they won't be used. | ||
d_equal_0 = paddle.equal(d, 0) | ||
d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d) | ||
out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe) | ||
return out | ||
|
||
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None): | ||
r""" | ||
Computes the n-th forward difference along the given axis. | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
shall we add gcd and lcm in tensor_method_func below ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done