Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[New API]add rot90 api #37634

Merged
merged 20 commits into from
Dec 6, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions paddle/fluid/framework/heter_pipeline_trainer_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -115,8 +115,6 @@ TEST(HeterPipelineTrainerTest, GPU) {
t3.add_trainers(1);
t3.add_trainers(1);
t3.add_trainers(1);
t3.add_dump_fields("hello");
t3.add_dump_param("fc_0");
auto* heter_section_param3 = t3.mutable_heter_section_param();
heter_section_param3->set_num_pipeline_stages(3);
heter_section_param3->set_pipeline_stage(2);
Expand Down
2 changes: 2 additions & 0 deletions python/paddle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,7 @@
from .tensor.manipulation import unsqueeze_ # noqa: F401
from .tensor.manipulation import unstack # noqa: F401
from .tensor.manipulation import flip # noqa: F401
from .tensor.manipulation import rot90 # noqa: F401
from .tensor.manipulation import unbind # noqa: F401
from .tensor.manipulation import roll # noqa: F401
from .tensor.manipulation import chunk # noqa: F401
Expand Down Expand Up @@ -404,6 +405,7 @@
'bitwise_not',
'mm',
'flip',
'rot90',
'bincount',
'histogram',
'multiplex',
Expand Down
262 changes: 262 additions & 0 deletions python/paddle/fluid/tests/unittests/test_rot90_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard


class TestRot90_API(unittest.TestCase):
"""Test rot90 api."""

def test_static_graph(self):
paddle.enable_static()
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=1, axes=[0, 1])
output = paddle.rot90(output, k=1, axes=[0, 1])
output = output.rot90(k=1, axes=[0, 1])
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)

img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(train_program,
feed={'input': img},
fetch_list=[output])

out_np = np.array(res[0])
out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32)

self.assertTrue(
(out_np == out_ref).all(),
msg='rot90 output is wrong, out =' + str(out_np))

def test_static_k_0(self):
paddle.enable_static()
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=0, axes=[0, 1])
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)

img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(train_program,
feed={'input': img},
fetch_list=[output])

out_np = np.array(res[0])
out_ref = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)

self.assertTrue(
(out_np == out_ref).all(),
msg='rot90 output is wrong, out =' + str(out_np))

def test_static_k_2(self):
paddle.enable_static()
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=2, axes=[0, 1])
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)

img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(train_program,
feed={'input': img},
fetch_list=[output])

out_np = np.array(res[0])
out_ref = np.array([[6, 5, 4], [3, 2, 1]]).astype(np.float32)

self.assertTrue(
(out_np == out_ref).all(),
msg='rot90 output is wrong, out =' + str(out_np))

def test_static_k_3(self):
paddle.enable_static()
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=3, axes=[0, 1])
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)

img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(train_program,
feed={'input': img},
fetch_list=[output])

out_np = np.array(res[0])
out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32)

self.assertTrue(
(out_np == out_ref).all(),
msg='rot90 output is wrong, out =' + str(out_np))

def test_static_neg_k_1(self):
paddle.enable_static()
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=-1, axes=[0, 1])
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)

img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(train_program,
feed={'input': img},
fetch_list=[output])

out_np = np.array(res[0])
out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32)

self.assertTrue(
(out_np == out_ref).all(),
msg='rot90 output is wrong, out =' + str(out_np))

def test_static_neg_k_2(self):
paddle.enable_static()
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=-2, axes=[0, 1])
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)

img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(train_program,
feed={'input': img},
fetch_list=[output])

out_np = np.array(res[0])
out_ref = np.array([[6, 5, 4], [3, 2, 1]]).astype(np.float32)

self.assertTrue(
(out_np == out_ref).all(),
msg='rot90 output is wrong, out =' + str(out_np))

def test_static_neg_k_3(self):
paddle.enable_static()
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=-3, axes=[0, 1])
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)

img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(train_program,
feed={'input': img},
fetch_list=[output])

out_np = np.array(res[0])
out_ref = np.array([[3, 6], [2, 5], [1, 4]]).astype(np.float32)

self.assertTrue(
(out_np == out_ref).all(),
msg='rot90 output is wrong, out =' + str(out_np))

def test_error_api(self):
paddle.enable_static()

## dims error
def run1():
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=1, axes=[0])

self.assertRaises(ValueError, run1)

## input dims error
def run2():
input = fluid.data(name='input', dtype='float32', shape=[2])
output = paddle.rot90(input, k=1, axes=[0, 1])

self.assertRaises(ValueError, run2)

def run3():
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=1, axes=[0, 0])

self.assertRaises(ValueError, run3)

def run4():
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=1, axes=[3, 1])

self.assertRaises(ValueError, run4)

def run5():
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = paddle.rot90(input, k=1, axes=[0, 3])

self.assertRaises(ValueError, run5)

def test_dygraph(self):
img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
with fluid.dygraph.guard():
inputs = fluid.dygraph.to_variable(img)

ret = paddle.rot90(inputs, k=1, axes=[0, 1])
ret = ret.rot90(1, axes=[0, 1])
ret = paddle.rot90(ret, k=1, axes=[0, 1])
out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32)

self.assertTrue(
(ret.numpy() == out_ref).all(),
msg='rot90 output is wrong, out =' + str(ret.numpy()))


if __name__ == "__main__":
unittest.main()
2 changes: 2 additions & 0 deletions python/paddle/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@
from .manipulation import unsqueeze_ # noqa: F401
from .manipulation import unstack # noqa: F401
from .manipulation import flip # noqa: F401
from .manipulation import rot90 # noqa: F401
from .manipulation import unbind # noqa: F401
from .manipulation import roll # noqa: F401
from .manipulation import chunk # noqa: F401
Expand Down Expand Up @@ -366,6 +367,7 @@
'unsqueeze_',
'unstack',
'flip',
'rot90',
'unbind',
'roll',
'tile',
Expand Down
86 changes: 86 additions & 0 deletions python/paddle/tensor/manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -495,6 +495,92 @@ def flip(x, axis, name=None):
return out


def rot90(x, k=1, axes=[0, 1], name=None):
"""
Rotate a n-D tensor by 90 degrees in the plane specified by dims axis. Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0.

Args:
x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
should be float32, float64, int32, int64, bool.
k (int): Number of times to rotate
axes (list|tuple): Axis to rotate
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .

Returns:
Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

Raises:
TypeError: If the data type of ``x`` is not Variable
TypeError: If the dtype of ``x`` is not float16, float32, float64, int32, int64, bool
TypeError: If the data type of ``dims`` is not list, tuple

Examples:
.. code-block:: python

import paddle
import numpy as np

data = paddle.arange(4)
data = paddle.reshape(data, (2, 2))
print(data) ## [[0, 1],[2, 3]]
y = paddle.rot90(data, 1, [0, 1])
print(y) #[[1, 3],[0, 2]]
y= paddle.rot90(data, -1, [0, 1])
print(y) #[[2, 0],[3, 1]]
data2 = paddle.arange(8)
data2 = paddle.reshape(data2, (2,2,2))
print(data2) ###[[[0, 1],[2, 3]],[[4, 5],[6, 7]]]
y = paddle.rot90(data2, 1, [1, 2])
print(y) ### [[[1, 3],[0, 2]],[[5, 7],[4, 6]]]
"""

helper = LayerHelper("rot90", **locals())
check_type(x, 'X', (Variable), 'rot90')
dtype = helper.input_dtype('x')
check_dtype(dtype, 'X',
['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
'rot90')
check_type(axes, 'axes', (list, tuple), 'rot90')

input_total_dims = len(x.shape)
total_rot_dims = len(axes)
if total_rot_dims != 2:
raise ValueError("expected total rotation axes == 2, but got axes = {}".
format(total_rot_dims))
if input_total_dims < 2:
raise ValueError("expected total dims >= 2, but got total dims = {}".
format(input_total_dims))

if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
raise ValueError(
"expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".
format(axes[0], axes[1]))

if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
raise ValueError("Rotation axis0 out of range, axis0 = {}".format(axes[
0]))
if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
raise ValueError("Rotation axis1 out of range, axis1 = {}".format(axes[
1]))

## k % 4
k = k % 4 if k >= 0 else 4 - (-k % 4)
if k == 0:
return x
if k == 2:
return flip(flip(x, axes[0]), axes[1])

axes_list = list(range(0, input_total_dims))
(axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
axes_list[axes[0]])
if k == 1:
return transpose(flip(x, axes[1]), axes_list)
else:
# k == 3
return flip(transpose(x, axes_list), axes[1])


def flatten(x, start_axis=0, stop_axis=-1, name=None):
r"""
**Flatten op**
Expand Down