Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add paddle.linalg.matrix_power OP #34667

Merged
merged 9 commits into from
Aug 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 131 additions & 0 deletions paddle/fluid/operators/matrix_power_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matrix_power_op.h"

namespace paddle {
namespace operators {

class MatrixPowerOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matrix_power");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matrix_power");
auto dims = ctx->GetInputDim("X");
auto n_dim = dims.size();
PADDLE_ENFORCE_GE(n_dim, 2,
platform::errors::InvalidArgument(
"The Input(X) should have at least 2 dimensions. But "
"received a %d dimension tensor.",
n_dim));
PADDLE_ENFORCE_EQ(dims[n_dim - 2], dims[n_dim - 1],
platform::errors::InvalidArgument(
"The inner-most 2 dimensions of Input(X) all should "
"be square matrices "
"But received X's shape[-2] = %d and shape[-1] = %d.",
dims[n_dim - 2], dims[n_dim - 1]));
ctx->SetOutputDim("Out", dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};

class MatrixPowerOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor), The input tensor of matrix_power op. Its shape should be "
"[*, M, M] where * is zero or more batch dimensions, and matrices "
"on the inner-most 2 dimensions all should be square matrices.");
AddOutput("Out",
"(Tensor), The output tensor of matrix_power op. It has the same "
"shape as the input.");
AddAttr<int>("n", "(int), The exponent used to calculate the power of X.");
AddComment(R"DOC(
Matrix Power Operator.

Computes the n-th power of a square matrix or a batch of square matrices.

)DOC");
}
};

class MatrixPowerOpInferVarType
: public framework::PassInDtypeAndVarTypeToOutput {
protected:
std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
const override {
static std::unordered_map<std::string, std::string> u_map{
{"X", /*->*/ "Out"}};
return u_map;
}
};

class MatrixPowerGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* context) const override {
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matrix_power_grad");
OP_INOUT_CHECK(context->HasInput("Out"), "Input", "Out",
"matrix_power_grad");
OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
"Out@GRAD", "matrix_power_grad");
auto x_dims = context->GetInputDim("X");
auto x_grad_name = framework::GradVarName("X");
if (context->HasOutput(x_grad_name)) {
context->SetOutputDim(x_grad_name, x_dims);
}
}
};

template <typename T>
class MatrixPowerGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Out", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(matrix_power, ops::MatrixPowerOp, ops::MatrixPowerOpMaker,
ops::MatrixPowerOpInferVarType,
ops::MatrixPowerGradOpMaker<paddle::framework::OpDesc>,
ops::MatrixPowerGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matrix_power_grad, ops::MatrixPowerGradOp);

REGISTER_OP_CPU_KERNEL(
matrix_power,
ops::MatrixPowerKernel<paddle::platform::CPUDeviceContext, float>,
ops::MatrixPowerKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
matrix_power_grad,
ops::MatrixPowerGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MatrixPowerGradKernel<paddle::platform::CPUDeviceContext, double>);
27 changes: 27 additions & 0 deletions paddle/fluid/operators/matrix_power_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/matrix_power_op.h"

namespace ops = paddle::operators;
namespace plf = paddle::platform;

REGISTER_OP_CUDA_KERNEL(matrix_power,
ops::MatrixPowerKernel<plf::CUDADeviceContext, float>,
ops::MatrixPowerKernel<plf::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
matrix_power_grad,
ops::MatrixPowerGradKernel<plf::CUDADeviceContext, float>,
ops::MatrixPowerGradKernel<plf::CUDADeviceContext, double>);
Loading