Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add new api fill_diagonal_tensor_ #34515

Merged
merged 1 commit into from
Sep 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
292 changes: 292 additions & 0 deletions paddle/fluid/operators/fill_diagonal_tensor_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,292 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fill_diagonal_tensor_op.h"

namespace paddle {
namespace operators {

// calculate the offset\new_dims\(strides of dim1/dim2)\matoffset
void CalMatDims(framework::DDim out_dims, int dim1, int dim2, int64_t *offset,
int64_t *new_dims, int64_t *strides, int64_t *matoffset) {
int64_t dimprod = 1, batchdim = 1;
int rank = out_dims.size();
int matoffidx = 0;
for (int i = rank - 1; i >= 0; i--) {
if (i == dim2) {
strides[0] = dimprod;
} else if (i == dim1) {
strides[1] = dimprod;
} else {
batchdim *= out_dims[i];
// matoffset calculate the offset position of the diagonal defined by dim1
// and dim2
// the first circle calculate the final free dimension
// and then calculate the front free dim one by one
if (matoffidx == 0) {
for (int64_t j = 0; j < out_dims[i]; j++) {
matoffset[matoffidx] = dimprod * j;
matoffidx++;
}
} else {
auto size = matoffidx;
for (int64_t j = 1; j < out_dims[i]; j++) {
for (int64_t k = 0; k < size; k++) {
matoffset[matoffidx] = matoffset[k] + dimprod * j;
matoffidx++;
}
}
}
}
dimprod *= out_dims[i];
}

auto diagdim = dim1;
if (*offset >= 0) {
diagdim = std::min(out_dims[dim1], out_dims[dim2] - *offset);
*offset *= strides[0];
} else {
diagdim = std::min(out_dims[dim1] + *offset, out_dims[dim2]);
*offset *= -strides[1];
}
new_dims[0] = batchdim;
new_dims[1] = diagdim;
return;
}

class FillDiagonalTensorOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddComment(R"DOC(Fill replace operator
Fill the diagonal of an tensor with `Y` Tensor.
)DOC");
AddInput("X", "(Tensor) The input tensor.");
AddInput("Y", "(Tensor) The input tensor to fill in.");
AddOutput("Out",
"Tensor, the output tensor, with the same shape and data type "
"as input(x)");
AddAttr<int>("dim1", "the first dim to figure out the diagonal")
.SetDefault(0);
AddAttr<int>("dim2", "the second dim to figure out the diagonal")
.SetDefault(1);
AddAttr<int64_t>("offset",
"offset of diagonal, zero means no offset, positive means "
"offset to up-right corner; negtive means offset to "
"bottom-left corner")
.SetDefault(0);
}
};

class FillDiagonalTensorOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *context) const override {
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "FillDiagonalTensor");
OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out",
"FillDiagonalTensor");
auto x_dims = context->GetInputDim("X");
context->SetOutputDim("Out", x_dims);
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};

class FillDiagonalTensorOpVarTypeInference
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It seems that this class is not necessary because X and Out must be both Tensor. Please remove it.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

算子开发注意事项中要求的注册这个函数:
框架没有提供默认的op_infer_var_type方法,用户需要根据实际情况添加op_infer_var_type。严格来说每个Op都应该注册一个InferVarType,op_infer_var_type根据输入的Var的type和dtype推断输出Var的type和dtype。

: public framework::VarTypeInference {
public:
void operator()(framework::InferVarTypeContext *ctx) const override {
auto var_type = ctx->GetInputType("X", 0);
auto data_type = ctx->GetInputDataType("X", 0);
ctx->SetOutputType("Out", var_type, framework::ALL_ELEMENTS);
ctx->SetOutputDataType("Out", data_type, framework::ALL_ELEMENTS);
}
};

template <typename T>
class FillDiagonalTensorKernel : public framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext &ctx) const override {
auto *out = ctx.Output<framework::Tensor>("Out");
auto *srctensor = ctx.Input<framework::Tensor>("Y");
auto dim1 = ctx.Attr<int>("dim1");
auto dim2 = ctx.Attr<int>("dim2");
auto offset = ctx.Attr<int64_t>("offset");
auto *xin = ctx.Input<framework::Tensor>("X");

T *out_data = out->mutable_data<T>(ctx.GetPlace());
const T *fill_data = srctensor->data<T>();

framework::TensorCopy(*xin, ctx.GetPlace(), out);
auto out_dims = out->dims();
auto matdims = srctensor->dims();
auto fill_dims = flatten_to_2d(matdims, matdims.size() - 1);

int64_t new_dims[2], strides[2];
std::vector<int64_t> matdim;
matdim.resize(fill_dims[0]);
CalMatDims(out_dims, dim1, dim2, &offset, new_dims, strides, matdim.data());
PADDLE_ENFORCE_EQ(
new_dims[0], fill_dims[0],
platform::errors::InvalidArgument("The dims should be %d x %d, but get "
"%d x %d in fill tensor Y",
new_dims[0], new_dims[1],
fill_dims[0], fill_dims[1]));
PADDLE_ENFORCE_EQ(
new_dims[1], fill_dims[1],
platform::errors::InvalidArgument("The dims should be %d x %d, but get "
"%d x %d in fill tensor Y",
new_dims[0], new_dims[1],
fill_dims[0], fill_dims[1]));

auto size = out->numel();
for (int64_t i = 0; i < fill_dims[0]; i += 1) {
auto sumoff = matdim[i] + offset;
for (int64_t j = 0; j < fill_dims[1]; j += 1) {
auto fill_index = j * (strides[1] + strides[0]) + sumoff;
if (fill_index < size) {
out_data[fill_index] = fill_data[i * fill_dims[1] + j];
}
}
}
}
};

class FillDiagonalTensorGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@GRAD", "mul");
auto x_dims = ctx->GetInputDim(framework::GradVarName("Out"));
auto x_grad_name = framework::GradVarName("X");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
}

framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
// Note: don't get data type from ctx.Input<framework::Tensor>("Input");
auto dtype =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->type();
return framework::OpKernelType(dtype, ctx.GetPlace());
}
};

template <typename T>
class FillDiagonalTensorGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

protected:
void Apply(GradOpPtr<T> retv) const override {
retv->SetType("fill_diagonal_tensor_grad");
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
retv->SetAttrMap(this->Attrs());
}
};

template <typename T>
class FillDiagonalTensorGradKernel : public framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext &ctx) const override {
auto *dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto *dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

auto dim1 = ctx.Attr<int>("dim1");
auto dim2 = ctx.Attr<int>("dim2");
auto offset = ctx.Attr<int64_t>("offset");
auto matrows = 1;

if (dx) {
auto *data = dx->mutable_data<T>(ctx.GetPlace());

auto dx_dims = dx->dims();
for (int i = 0; i < dx_dims.size(); i++) {
if (i != dim1 && i != dim2) {
matrows *= dx_dims[i];
}
}

int64_t new_dims[2], strides[2];
std::vector<int64_t> matdim;
matdim.resize(matrows);
CalMatDims(dx_dims, dim1, dim2, &offset, new_dims, strides,
matdim.data());

auto size = dx->numel();
framework::TensorCopy(*dout, ctx.GetPlace(), dx);

for (int64_t i = 0; i < new_dims[0]; i += 1) {
auto sumoff = matdim[i] + offset;
for (int64_t j = 0; j < new_dims[1]; j += 1) {
auto fill_index = j * (strides[1] + strides[0]) + sumoff;
if (fill_index < size) {
data[fill_index] = 0;
}
}
}
}
}
};

DECLARE_INPLACE_OP_INFERER(FillDiagonalTensorOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FillDiagonalTensorGradOpInplaceInferer,
{framework::GradVarName("Out"),
framework::GradVarName("X")});

} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;

REGISTER_OPERATOR(
fill_diagonal_tensor, ops::FillDiagonalTensorOp,
ops::FillDiagonalTensorOpMaker, ops::FillDiagonalTensorOpVarTypeInference,
ops::FillDiagonalTensorGradOpMaker<paddle::framework::OpDesc>,
ops::FillDiagonalTensorGradOpMaker<paddle::imperative::OpBase>,
ops::FillDiagonalTensorOpInplaceInferer);

REGISTER_OPERATOR(fill_diagonal_tensor_grad, ops::FillDiagonalTensorGradOp,
ops::FillDiagonalTensorGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(
fill_diagonal_tensor, ops::FillDiagonalTensorKernel<float>,
ops::FillDiagonalTensorKernel<double>,
ops::FillDiagonalTensorKernel<int64_t>, ops::FillDiagonalTensorKernel<int>,
ops::FillDiagonalTensorKernel<int8_t>,
ops::FillDiagonalTensorKernel<uint8_t>,
ops::FillDiagonalTensorKernel<paddle::platform::float16>,
ops::FillDiagonalTensorKernel<paddle::platform::complex<float>>,
ops::FillDiagonalTensorKernel<paddle::platform::complex<double>>,
ops::FillDiagonalTensorKernel<bool>);

REGISTER_OP_CPU_KERNEL(
fill_diagonal_tensor_grad, ops::FillDiagonalTensorGradKernel<float>,
ops::FillDiagonalTensorGradKernel<double>,
ops::FillDiagonalTensorGradKernel<int64_t>,
ops::FillDiagonalTensorGradKernel<int>,
ops::FillDiagonalTensorGradKernel<int8_t>,
ops::FillDiagonalTensorGradKernel<uint8_t>,
ops::FillDiagonalTensorGradKernel<paddle::platform::float16>,
ops::FillDiagonalTensorGradKernel<paddle::platform::complex<float>>,
ops::FillDiagonalTensorGradKernel<paddle::platform::complex<double>>,
ops::FillDiagonalTensorGradKernel<bool>);
Loading