Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix bn grad compute when x.stop_gradient=True #34102

Merged
merged 4 commits into from
Jul 15, 2021
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 49 additions & 39 deletions paddle/fluid/operators/batch_norm_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -464,11 +464,9 @@ void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
"BatchNormGrad");

// check output
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
framework::GradVarName("X"), "BatchNormGrad");

const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));
const bool has_x_grad = ctx->HasOutput(framework::GradVarName("X"));

PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad), true,
platform::errors::NotFound(
Expand Down Expand Up @@ -496,12 +494,14 @@ void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
? x_dims[1]
: x_dims[x_dims.size() - 1]);

ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
// has_scale_grad == has_bias_grad, judge has_scale_grad is enough
if (has_scale_grad) {
ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
}
if (has_x_grad) {
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}
}

framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
Expand Down Expand Up @@ -596,15 +596,20 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
if (ctx.HasInput("Y")) {
x = ctx.Input<Tensor>("Y");
is_inplace = true;
PADDLE_ENFORCE_EQ(d_x, d_y,
platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD not inplace in inplace mode"));
// if the input of batch norm is stop_gradient, d_x is null.
if (d_x) {
PADDLE_ENFORCE_EQ(d_x, d_y,
platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD not inplace in inplace mode"));
}
} else {
x = ctx.Input<Tensor>("X");
is_inplace = false;
PADDLE_ENFORCE_NE(d_x, d_y,
platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD inplaced in non-inplace mode"));
if (d_x) {
PADDLE_ENFORCE_NE(
d_x, d_y, platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD inplaced in non-inplace mode"));
}
}

// Get the size for each dimension.
Expand Down Expand Up @@ -673,7 +678,7 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
d_scale_arr.setZero();
}

if ((N * sample_size) == 1 && !use_global_stats) {
if (d_x && (N * sample_size) == 1 && !use_global_stats) {
framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
return;
}
Expand Down Expand Up @@ -718,8 +723,6 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
}
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
sample_size, N * C);

for (int nc = 0; nc < N * C; ++nc) {
int c = nc % C;
Expand All @@ -734,19 +737,24 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
}

if (!use_global_stats) {
for (int nc = 0; nc < N * C; ++nc) {
int c = nc % C;
d_x_arr.col(nc) =
scale_inv_var_nhw(c) *
(d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
(x_arr.col(nc) - mean_arr[c]) *
dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c));
}
} else {
for (int nc = 0; nc < N * C; ++nc) {
int c = nc % C;
d_x_arr.col(nc) = scale_inv_var_nhw(c) * d_y_arr.col(nc);
if (d_x) {
EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
sample_size, N * C);
if (!use_global_stats) {
for (int nc = 0; nc < N * C; ++nc) {
int c = nc % C;
d_x_arr.col(nc) =
scale_inv_var_nhw(c) *
(d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
(x_arr.col(nc) - mean_arr[c]) *
dy_mul_x_sub_mean_mul_invstd_sum_arr(c) *
inv_var_arr(c));
}
} else {
for (int nc = 0; nc < N * C; ++nc) {
int c = nc % C;
d_x_arr.col(nc) = scale_inv_var_nhw(c) * d_y_arr.col(nc);
}
}
}
break;
Expand All @@ -765,8 +773,6 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
}
ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
N * sample_size);

for (int nhw = 0; nhw < N * sample_size; ++nhw) {
dy_sum_arr += d_y_arr.col(nhw);
Expand All @@ -779,17 +785,21 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
}

if (!use_global_stats) {
for (int nhw = 0; nhw < N * sample_size; ++nhw) {
d_x_arr.col(nhw) =
scale_inv_var_nhw *
(d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
(x_arr.col(nhw) - mean_arr) *
dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
}
} else {
for (int nhw = 0; nhw < N * sample_size; ++nhw) {
d_x_arr.col(nhw) = scale_inv_var_nhw * d_y_arr.col(nhw);
if (d_x) {
EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
N * sample_size);
if (!use_global_stats) {
for (int nhw = 0; nhw < N * sample_size; ++nhw) {
d_x_arr.col(nhw) =
scale_inv_var_nhw *
(d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
(x_arr.col(nhw) - mean_arr) *
dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
}
} else {
for (int nhw = 0; nhw < N * sample_size; ++nhw) {
d_x_arr.col(nhw) = scale_inv_var_nhw * d_y_arr.col(nhw);
}
}
}
break;
Expand Down
56 changes: 43 additions & 13 deletions paddle/fluid/operators/batch_norm_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -834,15 +834,19 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
if (ctx.HasInput("Y")) {
x = ctx.Input<Tensor>("Y");
is_inplace = true;
PADDLE_ENFORCE_EQ(d_x, d_y,
platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD not inplace in inplace mode"));
if (d_x) {
PADDLE_ENFORCE_EQ(d_x, d_y,
platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD not inplace in inplace mode"));
}
} else {
x = ctx.Input<Tensor>("X");
is_inplace = false;
PADDLE_ENFORCE_NE(d_x, d_y,
platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD inplaced in non-inplace mode"));
if (d_x) {
PADDLE_ENFORCE_NE(
d_x, d_y, platform::errors::InvalidArgument(
"X@GRAD and Y@GRAD inplaced in non-inplace mode"));
}
}

const bool is_test = ctx.Attr<bool>("is_test");
Expand All @@ -861,7 +865,9 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

// init output
d_x->mutable_data<T>(ctx.GetPlace());
if (d_x) {
d_x->mutable_data<T>(ctx.GetPlace());
}

if (d_scale && d_bias) {
d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
Expand Down Expand Up @@ -902,7 +908,7 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>

Tensor transformed_x(x->type());
Tensor transformed_d_y(d_y->type());
Tensor transformed_d_x(d_x->type());
Tensor transformed_d_x;
if (data_layout == DataLayout::kNHWC &&
compute_format == DataLayout::kNCHW) {
VLOG(3) << "Transform input tensor from NHWC to NCHW.";
Expand All @@ -914,12 +920,16 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
&transformed_d_y);
TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
&transformed_d_y);
ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_x,
&transformed_d_x);
if (d_x) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_x,
&transformed_d_x);
}
} else {
transformed_x.ShareDataWith(*x);
transformed_d_y.ShareDataWith(*d_y);
transformed_d_x.ShareDataWith(*d_x);
if (d_x) {
transformed_d_x.ShareDataWith(*d_x);
}
}

std::vector<int> dims;
Expand Down Expand Up @@ -948,7 +958,9 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>

if (!use_global_stats) {
if ((N * H * W * D) == 1) {
framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
if (d_x) {
framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
}
math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
functor;
functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
Expand Down Expand Up @@ -1030,7 +1042,7 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
}

// This branch calls CUDNN APIs
if (d_scale && d_bias) {
if (d_x && d_scale && d_bias) {
bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
called = true;
Expand Down Expand Up @@ -1175,6 +1187,15 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
d_x->data<T>());
}
if (d_scale && d_bias) {
KeBNBackwardScaleBias<
T, block,
framework::DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
d_y->data<T>(), x->data<T>(), saved_mean_data, saved_var_data,
epsilon, N, C, H * W * D,
d_scale->data<BatchNormParamType<T>>(),
d_bias->data<BatchNormParamType<T>>());
}
} else {
if (d_x) {
BNBackwardData<T, block, framework::DataLayout::kNHWC><<<
Expand All @@ -1183,6 +1204,15 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
d_x->data<T>());
}
if (d_scale && d_bias) {
KeBNBackwardScaleBias<
T, block,
framework::DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
d_y->data<T>(), x->data<T>(), saved_mean_data, saved_var_data,
epsilon, N, C, H * W * D,
d_scale->data<BatchNormParamType<T>>(),
d_bias->data<BatchNormParamType<T>>());
}
}
}

Expand Down