Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Init partial network parameters from another saved model. #2664

Merged
merged 6 commits into from
Jun 29, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion paddle/py_paddle/dataprovider_converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ def finish_scan(self, argument):
if len(self.__shape__) > 1:
# The last-two dimenstions are the frame height and width.
# For example, the layout is CHW for 3-D feature of image.
# The H and W are the fram height and width.
# The H and W are the frame height and width.
h, w = self.__shape__[-2:]
argument.setSlotFrameHeight(self.pos, h)
argument.setSlotFrameWidth(self.pos, w)
Expand Down
44 changes: 34 additions & 10 deletions python/paddle/v2/parameters.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ class Parameters(object):
def __init__(self):
self.__param_conf__ = dict()
self.__gradient_machines__ = []
self.__tmp_params__ = []
self.__tmp_params__ = dict()

def __append_config__(self, param_conf):
"""
Expand Down Expand Up @@ -128,13 +128,10 @@ def __getitem__(self, key):

if len(self.__gradient_machines__) == 0:
# create new parameter in python numpy.
if len(self.__tmp_params__) != 0:
ret_list = [
mat for name, mat in self.__tmp_params__ if name == key
]
if len(ret_list) == 1:
return ret_list[0]
return np.ndarray(shape=shape, dtype=np.float32)
if key in self.__tmp_params__:
return self.__tmp_params__[key]
else:
return np.ndarray(shape=shape, dtype=np.float32)
else:
for each_gradient_machine in self.__gradient_machines__:
param = __get_parameter_in_gradient_machine__(
Expand Down Expand Up @@ -187,7 +184,7 @@ def __setitem__(self, key, value):
(shape, value.shape))

if len(self.__gradient_machines__) == 0:
self.__tmp_params__.append((key, value))
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The append could lead the repeated key in self.__tmp_params__. This is a bug.

self.__tmp_params__[key] = value
else:
for each_gradient_machine in self.__gradient_machines__:
__copy_parameter_to_gradient_machine__(each_gradient_machine,
Expand Down Expand Up @@ -231,7 +228,7 @@ def append_gradient_machine(self, gradient_machine):
raise ValueError("gradient_machine should be api.GradientMachine")

if len(self.__tmp_params__) != 0:
for name, val in self.__tmp_params__:
for name, val in self.__tmp_params__.iteritems():
try:
__copy_parameter_to_gradient_machine__(gradient_machine,
name, val)
Expand Down Expand Up @@ -287,6 +284,18 @@ def to_tar(self, f):

@staticmethod
def from_tar(f):
"""
Create a `Parameters` object from the given file. And
the `Parameters` only contains the parameters in this
file. It is adapted the parameters are same in the
defined network and the given file. For example, it
can be used in the inference.

:param f: the initialized model file.
:type f: tar file
:return: A Parameters object.
:rtype: Parameters.
"""
params = Parameters()
tar = tarfile.TarFile(fileobj=f, mode='r')
for finfo in tar:
Expand All @@ -302,6 +311,21 @@ def from_tar(f):
params.deserialize(param_name, f)
return params

def init_from_tar(self, f):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Because from_tar is a static method. Maybe Parameters.from_tar is better.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

"""
Different from `from_tar`, this interface can be used to
init partial network parameters from another saved model.

:param f: the initialized model file.
:type f: tar file
:return: Nothing.
"""

tar_param = Parameters.from_tar(f)
for pname in tar_param.names():
if pname in self.names():
self.set(pname, tar_param.get(pname))


def __get_parameter_in_gradient_machine__(gradient_machine, name):
"""
Expand Down
57 changes: 52 additions & 5 deletions python/paddle/v2/tests/test_parameters.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,17 @@
import numpy


def __rand_param_config__(name):
def __rand_param_config__(name, psize=None):
conf = ParameterConfig()
conf.name = name
size = 1
for i in xrange(2):
dim = random.randint(1, 1000)
conf.dims.append(dim)
size *= dim
if psize is None:
for i in xrange(2):
dim = random.randint(1, 1000)
conf.dims.append(dim)
size *= dim
else:
size = psize
conf.size = size
assert conf.IsInitialized()
return conf
Expand Down Expand Up @@ -77,6 +80,50 @@ def initializer(name):
expected = numpy.array([[1, 1], [1, 2], [1, 1]], numpy.float32)
assert numpy.logical_and.reduce(numpy.reshape(val == expected, 6))

def test_init_from_tar(self):
def get_param(names, size):
p = parameters.Parameters()
for k, v in zip(names, size):
p.__append_config__(__rand_param_config__(k, v))
for name in p.names():
param = p.get(name)
param[:] = numpy.random.uniform(
-1.0, 1.0, size=p.get_shape(name))
p.set(name, param)
return p

def get_parames():
name1 = ['param_0', 'param_1']
size1 = [128, 256]
p1 = get_param(name1, size1)
file1 = cStringIO.StringIO()
p1.to_tar(file1)
file1.seek(0)

name2 = ['param_0', 'param_1', 'param_2']
size2 = [128, 256, 288]
p2 = get_param(name2, size2)
file2 = cStringIO.StringIO()
p2.to_tar(file2)
file2.seek(0)
return p1, file1, p2, file2

p1, file1, p2, file2 = get_parames()
p2.init_from_tar(file1)
for name in p1.names():
self.assertEqual(p1.get_shape(name), p2.get_shape(name))
v1 = p1.get(name)
v2 = p2.get(name)
self.assertTrue(numpy.isclose(v1, v2).all())

p1, file1, p2, file2 = get_parames()
p1.init_from_tar(file2)
for name in p1.names():
self.assertEqual(p1.get_shape(name), p2.get_shape(name))
v1 = p1.get(name)
v2 = p2.get(name)
self.assertTrue(numpy.isclose(v1, v2).all())


if __name__ == '__main__':
unittest.main()