Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix MSELoss type issue #26500

Merged
merged 1 commit into from
Aug 24, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 15 additions & 39 deletions python/paddle/nn/layer/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,9 +152,6 @@ def forward(self, input, label):

class MSELoss(fluid.dygraph.layers.Layer):
"""
:alias_main: paddle.nn.MSELoss
:alias: paddle.nn.MSELoss,paddle.nn.layer.MSELoss,paddle.nn.layer.loss.MSELoss

**Mean Square Error Loss**
Computes the mean square error (squared L2 norm) of given input and label.

Expand All @@ -176,55 +173,34 @@ class MSELoss(fluid.dygraph.layers.Layer):
where `input` and `label` are `float32` tensors of same shape.

Parameters:
input (Variable): Input tensor, the data type is float32,
label (Variable): Label tensor, the data type is float32,
reduction (string, optional): The reduction method for the output,
could be 'none' | 'mean' | 'sum'.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.

Returns:
The tensor variable storing the MSE loss of input and label.

Return type:
Variable.
Shape:
input (Tensor): Input tensor, the data type is float32 or float64
label (Tensor): Label tensor, the data type is float32 or float64
output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.

Examples:
.. code-block:: python

import numpy as np
import paddle
from paddle import fluid
import paddle.fluid.dygraph as dg

mse_loss = paddle.nn.loss.MSELoss()
input = fluid.data(name="input", shape=[1])
label = fluid.data(name="label", shape=[1])
place = fluid.CPUPlace()
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")

# declarative mode
output = mse_loss(input,label)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
output_data = exe.run(
fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data)
# [array([0.04000002], dtype=float32)]

# imperative mode
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
output = mse_loss(input, label)
print(output.numpy())
# [0.04000002]
paddle.disable_static()
mse_loss = paddle.nn.loss.MSELoss()
input = paddle.to_tensor(input_data)
label = paddle.to_tensor(label_data)
output = mse_loss(input, label)
print(output.numpy())
# [0.04000002]
"""

def __init__(self, reduction='mean'):
Expand All @@ -237,10 +213,10 @@ def __init__(self, reduction='mean'):

def forward(self, input, label):
if not fluid.framework.in_dygraph_mode():
fluid.data_feeder.check_variable_and_dtype(input, 'input',
['float32'], 'MSELoss')
fluid.data_feeder.check_variable_and_dtype(label, 'label',
['float32'], 'MSELoss')
fluid.data_feeder.check_variable_and_dtype(
input, 'input', ['float32', 'float64'], 'MSELoss')
fluid.data_feeder.check_variable_and_dtype(
label, 'label', ['float32', 'float64'], 'MSELoss')

square_out = fluid.layers.square(
fluid.layers.elementwise_sub(input, label))
Expand Down