-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
437 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from .group_sharded import group_sharded_parallel, save_group_sharded_model # noqa: F401 | ||
|
||
__all__ = ['group_sharded_parallel', 'save_group_sharded_model'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import logging | ||
from enum import Enum | ||
|
||
import paddle | ||
|
||
from paddle.optimizer import Optimizer | ||
from paddle.distributed.utils import get_logger | ||
from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2 import ShardingOptimizerStage2 | ||
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2 import ShardingStage2 | ||
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage3 import ShardingStage3 | ||
from paddle.distributed.fleet.meta_parallel.sharding.sharding_utils import ShardingScaler | ||
|
||
logger_ = get_logger(logging.INFO) | ||
|
||
|
||
def group_sharded_parallel(model, | ||
optimizer, | ||
level, | ||
scaler=None, | ||
group=None, | ||
offload=False, | ||
sync_buffers=False, | ||
buffer_max_size=2**23, | ||
segment_size=2**20, | ||
sync_comm=False): | ||
""" | ||
Use this module to configure and wrap up the parameters of the group shared module. | ||
Args: | ||
model (Layer): The layer to be wrapped with group_sharded_parallel. | ||
optimizer (Optimizer): The optimizer to be wrapped with group_sharded_parallel. | ||
level (str): The different level of the group sharded. Such as `os`, `os_g`, `p_g_os`. | ||
scaler (GradScaler, optional): The scaler to be wrapped with group_sharded_parallel. Defaults to None. | ||
group (Group, optional): The group instance. Defaults to None.d | ||
offload (bool, optional): Whether to perform optimizer state and gradient transfer CPU. Defaults to False. | ||
sync_buffers (bool, optional): Whether to broadcast model buffers. Defaults to False. | ||
buffer_max_size (int, optional): The max size of the buffer used to integrate gradient in `os_g`. Defaults to 2**23. | ||
segment_size (int, optional): The smallest size of parameter to be sharded in `p_g_os`. Defaults to 2**20. | ||
sync_comm (bool, optional): Whether to use synchronous communication, only in `p_g_os` used. Defaults to False. | ||
Returns: | ||
model: A wrapper for group sharded given model. | ||
optimizer: A wrapper for group sharded given optimizer. | ||
scaler: A wrapper for group sharded given scaler. | ||
Examples: | ||
.. code-block:: python | ||
# required: distributed | ||
import paddle | ||
from paddle.fluid.dygraph.nn import Linear | ||
from paddle.distributed import fleet | ||
from paddle.distributed.sharding import group_sharded_parallel | ||
fleet.init(is_collective=True) | ||
group = paddle.distributed.new_group([0, 1]) | ||
model = Linear(1000, 1000) | ||
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0) | ||
optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip) | ||
# wrap sharding model, optimizer and scaler | ||
model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler) | ||
img, label = data | ||
label.stop_gradient = True | ||
img.stop_gradient = True | ||
out = model(img) | ||
loss = paddle.nn.functional.cross_entropy(input=out, label=label) | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.clear_grad() | ||
""" | ||
# check optition type | ||
assert isinstance( | ||
model, | ||
paddle.nn.Layer), "The model must be the instance of paddle.nn.Layer." | ||
assert isinstance( | ||
optimizer, Optimizer | ||
), "The optimizer must be the instance of paddle.optimizer.Optimizer." | ||
assert level in ['os', 'os_g', 'p_g_os' | ||
], "The level must be os, os_g or p_g_os." | ||
|
||
def check_dtype(param): | ||
return param.dtype == paddle.float16 | ||
|
||
params_fp16 = filter(check_dtype, model.parameters()) | ||
if scaler is None and len(params_fp16) > 0: | ||
raise ValueError("Please enter the correct scaler.") | ||
# convert model/optimizer/scaler | ||
if level in ['os', 'os_g']: | ||
logger_.info("*" * 30) | ||
logger_.info("Sharded level os uses sharded level os_g achieved now.") | ||
logger_.info("*" * 30) | ||
optimizer = ShardingOptimizerStage2( | ||
params=model.parameters(), | ||
optim=optimizer, | ||
group=group, | ||
offload=offload) | ||
model = ShardingStage2( | ||
model, | ||
optimizer, | ||
group=group, | ||
sync_buffers=sync_buffers, | ||
buffer_max_size=buffer_max_size) | ||
elif level == 'p_g_os': | ||
model = ShardingStage3( | ||
model, | ||
optimizer=optimizer, | ||
group=group, | ||
sync_buffers=sync_buffers, | ||
segment_size=segment_size, | ||
offload=offload, | ||
sync_comm=sync_comm) | ||
else: | ||
raise ValueError("Please enter the correct level.") | ||
if params_fp16 and isinstance(scaler, paddle.amp.GradScaler): | ||
scaler = ShardingScaler(scaler) | ||
logger_.info("*" * 30) | ||
logger_.info( | ||
"If there is a communication hang using group sharded, please check whether the communication operations of each process are unified." | ||
) | ||
logger_.info("*" * 30) | ||
|
||
return model, optimizer, scaler | ||
|
||
|
||
def save_group_sharded_model(model, output, optimizer=None): | ||
""" | ||
Group sharded encapsulated model and optimizer state saving module. | ||
Args: | ||
model (Layer): A wrapper for group sharded given model. | ||
output (str): Save directory. | ||
optimizer (Optimizer, optional): Group sharded encapsulated optimizer. Defaults to None. | ||
Examples: | ||
.. code-block:: python | ||
# required: distributed | ||
import paddle | ||
from paddle.fluid.dygraph.nn import Linear | ||
from paddle.distributed import fleet | ||
from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model | ||
fleet.init(is_collective=True) | ||
group = paddle.distributed.new_group([0, 1]) | ||
model = Linear(1000, 1000) | ||
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0) | ||
optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip) | ||
# wrap sharding model, optimizer and scaler | ||
model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler) | ||
img, label = data | ||
label.stop_gradient = True | ||
img.stop_gradient = True | ||
out = model(img) | ||
loss = paddle.nn.functional.cross_entropy(input=out, label=label) | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.clear_grad() | ||
# save model and optimizer state_dict | ||
save_group_sharded_model(model, optimizer,output=output_dir) | ||
""" | ||
logger_.info( | ||
"==========Begin to save group sharded model and optimizer==========") | ||
assert not os.path.isfile( | ||
output | ||
), "Saving directory ({}) should be a directory, not a file".format(output) | ||
os.makedirs(output, exist_ok=True) | ||
output_model = os.path.join(output, "model.pdmodel") | ||
if isinstance(model, ShardingStage2): | ||
paddle.save(model._layer.state_dict(), output_model) | ||
elif isinstance(model, ShardingStage3): | ||
convert2cpu = True if model._offload else False | ||
model.get_all_parameters(convert2cpu=convert2cpu) | ||
paddle.save(model._layer.state_dict(), output_model) | ||
else: | ||
raise ValueError( | ||
"Please use the layer which is wrapped with group_sharded_parallel.") | ||
|
||
if optimizer is not None: | ||
assert hasattr( | ||
optimizer, "_optim" | ||
), "Please use the optimizer which is wrapped with group_sharded_parallel." | ||
output_opt = os.path.join(output, "model.pdopt") | ||
paddle.save(optimizer._optim.state_dict(), output_opt) | ||
logger_.info( | ||
"==========End to save group sharded model and optimizer==========") |
Oops, something went wrong.