Skip to content

Commit

Permalink
Merge pull request #9946 from chengduoZH/feature/add_reduce_op_handle
Browse files Browse the repository at this point in the history
Feature/add reduce op handle
  • Loading branch information
chengduo authored Apr 20, 2018
2 parents 23a21c8 + e63013a commit cec4e6e
Show file tree
Hide file tree
Showing 6 changed files with 609 additions and 30 deletions.
11 changes: 8 additions & 3 deletions paddle/fluid/framework/details/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,21 +2,24 @@ cc_library(var_handle SRCS var_handle.cc DEPS place)
cc_library(op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context lod_tensor)
cc_library(scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda)
cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(send_op_handle SRCS send_op_handle.cc DEPS framework_proto scope place operator op_registry)

cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)

if(WITH_GPU)
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda)
set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle)
nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base scope ddim dynload_cuda)
else()
set(multi_devices_graph_builder_deps)
cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base scope ddim)
endif()
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle send_op_handle ${multi_devices_graph_builder_deps})
scale_loss_grad_op_handle send_op_handle ${multi_devices_graph_builder_deps})

cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context)
Expand All @@ -30,3 +33,5 @@ cc_test(broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_ha
device_context broadcast_op_handle)
cc_test(gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context gather_op_handle)
cc_test(reduce_op_handle_test SRCS reduce_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context reduce_op_handle )
28 changes: 1 addition & 27 deletions paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,8 @@
// limitations under the License.

#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"

#include <algorithm>
#include "paddle/fluid/framework/details/reduce_and_gather.h"

namespace paddle {
namespace framework {
Expand All @@ -29,32 +29,6 @@ NCCLAllReduceOpHandle::NCCLAllReduceOpHandle(
}
}

struct ReduceLoDTensor {
const std::vector<LoDTensor> &src_tensors_;
LoDTensor &dst_tensor_;

ReduceLoDTensor(const std::vector<LoDTensor> &src, LoDTensor *dst)
: src_tensors_(src), dst_tensor_(*dst) {}

template <typename T>
void operator()() const {
PADDLE_ENFORCE(!src_tensors_.empty());
auto &t0 = src_tensors_[0];
PADDLE_ENFORCE_NE(t0.numel(), 0);
dst_tensor_.Resize(t0.dims());
T *dst = dst_tensor_.mutable_data<T>(platform::CPUPlace());
std::copy(t0.data<T>(), t0.data<T>() + t0.numel(), dst);

for (size_t i = 1; i < src_tensors_.size(); ++i) {
auto &t = src_tensors_[i];
PADDLE_ENFORCE_EQ(t.dims(), t0.dims());
PADDLE_ENFORCE_EQ(t.type(), t0.type());
std::transform(t.data<T>(), t.data<T>() + t.numel(), dst, dst,
[](T a, T b) -> T { return a + b; });
}
}
};

void NCCLAllReduceOpHandle::RunImpl() {
if (inputs_.size() == 1) {
return; // No need to all reduce when GPU count = 1;
Expand Down
94 changes: 94 additions & 0 deletions paddle/fluid/framework/details/reduce_and_gather.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <map>
#include <vector>
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
namespace paddle {
namespace framework {
namespace details {

struct ReduceLoDTensor {
const std::vector<LoDTensor> &src_tensors_;
LoDTensor &dst_tensor_;

ReduceLoDTensor(const std::vector<LoDTensor> &src, LoDTensor *dst)
: src_tensors_(src), dst_tensor_(*dst) {}

template <typename T>
void operator()() const {
PADDLE_ENFORCE(!src_tensors_.empty());
auto &t0 = src_tensors_[0];
PADDLE_ENFORCE_NE(t0.numel(), 0);
dst_tensor_.Resize(t0.dims());
T *dst = dst_tensor_.mutable_data<T>(platform::CPUPlace());
std::copy(t0.data<T>(), t0.data<T>() + t0.numel(), dst);

for (size_t i = 1; i < src_tensors_.size(); ++i) {
auto &t = src_tensors_[i];
PADDLE_ENFORCE_EQ(t.dims(), t0.dims());
PADDLE_ENFORCE_EQ(t.type(), t0.type());
std::transform(t.data<T>(), t.data<T>() + t.numel(), dst, dst,
[](T a, T b) -> T { return a + b; });
}
}
};

inline void GatherSelectedRows(
const std::vector<const SelectedRows *> &src_selecte_rows_,
const std::vector<platform::Place> &in_places,
const std::unordered_map<platform::Place, platform::DeviceContext *,
platform::PlaceHash> &dev_ctxes,
const platform::Place &out_place, SelectedRows *dst_selecte_rows) {
PADDLE_ENFORCE(!src_selecte_rows_.empty());

std::vector<Tensor> in_tensors;
std::vector<int64_t> out_rows;

for (auto in_sr_ptr : src_selecte_rows_) {
auto &in_sr = *in_sr_ptr;
in_tensors.emplace_back(in_sr.value());
out_rows.insert(out_rows.end(), in_sr.rows().begin(), in_sr.rows().end());
}

auto &pre_in = src_selecte_rows_[0];

auto &dst_tensor = *dst_selecte_rows;
dst_tensor.set_height(pre_in->height());
dst_tensor.set_rows(out_rows);
size_t rows = out_rows.size();
DDim out_dim = pre_in->GetCompleteDims();
out_dim[0] = static_cast<int64_t>(rows);
dst_tensor.mutable_value()->Resize(out_dim);
dst_tensor.mutable_value()->mutable_data(out_place, pre_in->value().type());
Tensor *out_tensor = dst_tensor.mutable_value();

// copy
int s = 0, e = 0;
for (size_t j = 0; j < in_tensors.size(); ++j) {
e += in_tensors[j].dims()[0];
auto sub_out = out_tensor->Slice(s, e);
paddle::framework::TensorCopy(in_tensors[j], out_place,
*(dev_ctxes.at(in_places[j])), &sub_out);
s = e;
}
}

} // namespace details
} // namespace framework
} // namespace paddle
161 changes: 161 additions & 0 deletions paddle/fluid/framework/details/reduce_op_handle.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"

namespace paddle {
namespace framework {
namespace details {

void ReduceOpHandle::RunImpl() {
// the input and output may have dummy var.
std::vector<VarHandle *> in_var_handles = GetValidVarHandles(inputs_);
std::vector<VarHandle *> out_var_handles = GetValidVarHandles(outputs_);

PADDLE_ENFORCE_EQ(
in_var_handles.size(), places_.size(),
"The number of output should equal to the number of places.");
PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
"The number of output should be one.");

// Wait input done, this Wait is asynchronous operation
WaitEvents(in_var_handles);

// check in the same place
auto in_0_handle = in_var_handles[0];
auto pre_place = in_0_handle->place_;

std::vector<platform::Place> in_places;
for (auto *in_handle : in_var_handles) {
auto in_p = in_handle->place_;
PADDLE_ENFORCE_EQ(in_p.which(), pre_place.which(),
"Places must be all on CPU or all on CUDA.");
in_places.emplace_back(in_p);
}

auto out_var = local_scopes_[out_var_handles[0]->scope_idx_]->FindVar(
out_var_handles[0]->name_);

auto pre_in_var =
local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_);

if (pre_in_var->IsType<framework::SelectedRows>()) {
auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
std::vector<const SelectedRows *> in_selected_rows;

for (auto *in_handle : in_var_handles) {
auto in_var =
local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
auto &in_sr = in_var->Get<framework::SelectedRows>();

PADDLE_ENFORCE_EQ(in_sr.value().type(), pre_in.value().type(),
"The type of input is not consistent.");

in_selected_rows.emplace_back(&in_sr);
}
auto trg = out_var->GetMutable<framework::SelectedRows>();
GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_,
out_var_handles[0]->place_, trg);
} else {
auto pre_in = pre_in_var->Get<framework::LoDTensor>();
std::vector<LoDTensor> lod_tensors;

// can be refined
for (auto *in_handle : in_var_handles) {
auto in_var =
local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
auto &in_sr = in_var->Get<framework::LoDTensor>();

PADDLE_ENFORCE_EQ(in_sr.type(), pre_in.type(),
"The type of input is not consistent.");

lod_tensors.emplace_back(in_sr);
}

auto trg = out_var->GetMutable<framework::LoDTensor>();
trg->Resize(pre_in.dims());
trg->mutable_data(out_var_handles[0]->place_, pre_in.type());

if (paddle::platform::is_cpu_place(pre_place)) {
ReduceLoDTensor func(lod_tensors, trg);
VisitDataType(ToDataType(lod_tensors[0].type()), func);
} else if (paddle::platform::is_gpu_place(pre_place)) {
#ifdef PADDLE_WITH_CUDA
auto out_p = out_var_handles[0]->place_;
int root = boost::get<platform::CUDAPlace>(out_p).device;

std::vector<std::function<void()>> all_reduce_calls;
for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &p = in_places[i];
auto &lod_tensor = lod_tensors[i];

int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_;

void *buffer = const_cast<void *>(lod_tensor.data<void>());
void *recvbuffer = nullptr;
if (root == dev_id) {
recvbuffer = trg->mutable_data(out_var_handles[0]->place_);
}

all_reduce_calls.emplace_back([=] {
PADDLE_ENFORCE(platform::dynload::ncclReduce(
buffer, recvbuffer, static_cast<size_t>(lod_tensor.numel()),
platform::ToNCCLDataType(lod_tensor.type()), ncclSum, root, comm,
stream));
});
}

this->RunAndRecordEvent([&] {
platform::NCCLGroupGuard guard;
for (auto &call : all_reduce_calls) {
call();
}
});
#else
PADDLE_THROW("CUDA is not support.");
#endif
} else {
PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
}
}
}

void ReduceOpHandle::WaitEvents(
const std::vector<VarHandle *> &in_var_handles) {
if (in_var_handles[0]->generated_op_) {
for (auto *in : in_var_handles) {
in_var_handles[0]->generated_op_->Wait(dev_ctxes_[in->place_]);
}
}
}

std::vector<VarHandle *> ReduceOpHandle::GetValidVarHandles(
const std::vector<VarHandleBase *> &inputs) {
std::vector<VarHandle *> in_var_handles;
for (auto *in : inputs) {
auto *in_handle = dynamic_cast<VarHandle *>(in);
if (in_handle) {
in_var_handles.push_back(in_handle);
}
}
return in_var_handles;
}
std::string ReduceOpHandle::Name() const { return "reduce"; }
} // namespace details
} // namespace framework
} // namespace paddle
Loading

0 comments on commit cec4e6e

Please sign in to comment.