Skip to content

Commit

Permalink
[Paddle Inference] Support range trt converter and add scalar interfa…
Browse files Browse the repository at this point in the history
…ce. (#48697)

* add_range

* add_range
  • Loading branch information
xiaoxiaohehe001 authored Dec 5, 2022
1 parent 7507956 commit aee2db0
Show file tree
Hide file tree
Showing 7 changed files with 321 additions and 5 deletions.
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2329,6 +2329,7 @@ USE_TRT_CONVERTER(remove_padding)
USE_TRT_CONVERTER(equal);
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
USE_TRT_CONVERTER(range)
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
USE_TRT_CONVERTER(sum)
Expand Down
1 change: 1 addition & 0 deletions paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ list(
preln_residual_bias.cc
c_allreduce_op.cc
top_k_op.cc
range_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
rnn_op.cc
Expand Down
65 changes: 65 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/range_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class RangeOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert a range op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
nvinfer1::ILayer* layer = nullptr;
nvinfer1::ITensor* quotient_tensor;

// Declare inputs
auto* start = engine_->GetITensor(op_desc.Input("Start")[0]);
auto* end = engine_->GetITensor(op_desc.Input("End")[0]);
auto* step = engine_->GetITensor(op_desc.Input("Step")[0]);
auto output_name = op_desc.Output("Out")[0];

auto zero_tensor = Add1DConstantLayer(0, output_name + "_zero_tensor_");
auto fquotient_tensor = FloorDiv(Sub(start, end), step);
if (start->getType() == nvinfer1::DataType::kFLOAT) {
auto* cast_int32_layer =
TRT_ENGINE_ADD_LAYER(engine_, Identity, *fquotient_tensor);
cast_int32_layer->setOutputType(0, nvinfer1::DataType::kINT32);
cast_int32_layer->getOutput(0)->setType(nvinfer1::DataType::kINT32);
quotient_tensor = cast_int32_layer->getOutput(0);
} else {
quotient_tensor = fquotient_tensor;
}
auto number_tensor = Max(Sub(zero_tensor, quotient_tensor), zero_tensor);
auto* start1 = engine_->GetITensor(op_desc.Input("Start")[0], true);

layer = TRT_ENGINE_ADD_LAYER(
engine_, Fill, nvinfer1::Dims{}, nvinfer1::FillOperation::kLINSPACE);
layer->setInput(0, *number_tensor);
layer->setInput(1, *start1);
layer->setInput(2, *step);

RreplenishLayerAndOutput(layer, "range", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(range, RangeOpConverter);
16 changes: 13 additions & 3 deletions paddle/fluid/inference/tensorrt/engine.cc
Original file line number Diff line number Diff line change
Expand Up @@ -451,7 +451,11 @@ void TensorRTEngine::SetITensor(const std::string &name,
itensor_map_[name] = tensor;
}

nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name,
bool scalar) {
if (scalar) {
return ConvertWeight2ITensor(name, true);
}
if (itensor_map_.count(name)) {
return itensor_map_[name];
} else {
Expand All @@ -463,7 +467,7 @@ nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
const std::string &name) {
const std::string &name, bool scalar) {
auto *var_v = scope_->FindVar(name);
PADDLE_ENFORCE_NOT_NULL(
var_v,
Expand All @@ -489,9 +493,15 @@ nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
trt_in_shape.d[i] = trt_in_shape.d[i + 1];
}
}
if (scalar) {
trt_in_shape.nbDims = 0;
trt_in_shape.d[0] = var_dims[0];
}
nvinfer1::ILayer *layer =
TRT_ENGINE_ADD_LAYER(this, Constant, trt_in_shape, weight.get());
this->SetITensor(name, layer->getOutput(0));
if (!scalar) {
this->SetITensor(name, layer->getOutput(0));
}
return layer->getOutput(0);
}

Expand Down
5 changes: 3 additions & 2 deletions paddle/fluid/inference/tensorrt/engine.h
Original file line number Diff line number Diff line change
Expand Up @@ -295,8 +295,9 @@ class TensorRTEngine {
void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
// Get an ITensor called name.
nvinfer1::ITensor* GetITensor(const std::string& name);
nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name);
nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
bool scalar = false);
std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();

nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
Expand Down
8 changes: 8 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -337,6 +337,12 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}

if (op_type == "range") {
if (!with_dynamic_shape) {
return false;
}
}

if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
if (!with_dynamic_shape) {
Expand Down Expand Up @@ -2369,6 +2375,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"matmul",
"matmul_v2",
"bmm",
"range",
"conv2d",
"conv2d_fusion",
"pool2d",
Expand Down Expand Up @@ -2507,6 +2514,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"matmul",
"matmul_v2",
"bmm",
"range",
"conv2d",
"conv2d_fusion",
"pool2d",
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from functools import partial
from typing import List

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer


class TrtConvertRangeDynamicTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input():
return np.array([1]).astype(np.int32)

for in_dtype in [2]:
self.in_dtype = in_dtype
dics = [{}]
ops_config = [
{
"op_type": "fill_constant",
"op_inputs": {},
"op_outputs": {"Out": ["start_data"]},
"op_attrs": {
"dtype": self.in_dtype,
"str_value": "7",
"shape": [1],
},
},
{
"op_type": "fill_constant",
"op_inputs": {},
"op_outputs": {"Out": ["end_data"]},
"op_attrs": {
"dtype": self.in_dtype,
"str_value": "256",
"shape": [1],
},
},
{
"op_type": "fill_constant",
"op_inputs": {},
"op_outputs": {"Out": ["step_data"]},
"op_attrs": {
"dtype": self.in_dtype,
"str_value": "1",
"shape": [1],
},
},
{
"op_type": "range",
"op_inputs": {
"Start": ["start_data"],
"End": ["end_data"],
"Step": ["step_data"],
},
"op_outputs": {"Out": ["range_output_data1"]},
"op_attrs": dics[0],
},
{
"op_type": "cast",
"op_inputs": {"X": ["range_output_data1"]},
"op_outputs": {"Out": ["range_output_data"]},
"op_attrs": {"in_dtype": self.in_dtype, "out_dtype": 5},
},
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"step_data": TensorConfig(data_gen=partial(generate_input)),
},
outputs=["range_output_data"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"start_data": [1],
"end_data": [1],
"step_data": [1],
}
self.dynamic_shape.max_input_shape = {
"start_data": [1],
"end_data": [1],
"step_data": [1],
}
self.dynamic_shape.opt_input_shape = {
"start_data": [1],
"end_data": [1],
"step_data": [1],
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-2

def test(self):
self.run_test()


class TrtConvertRangeStaticTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input():
return np.array([0]).astype(np.int32)

def generate_input1():
return np.array([128]).astype(np.int32)

def generate_input2():
return np.array([1]).astype(np.int32)

for in_dtype in [2, 5]:
self.in_dtype = in_dtype
dics = [{}]
ops_config = [
{
"op_type": "range",
"op_inputs": {
"Start": ["start_data"],
"End": ["end_data"],
"Step": ["step_data"],
},
"op_outputs": {"Out": ["range_output_data1"]},
"op_attrs": dics[0],
},
{
"op_type": "cast",
"op_inputs": {"X": ["range_output_data1"]},
"op_outputs": {"Out": ["range_output_data"]},
"op_attrs": {"in_dtype": self.in_dtype, "out_dtype": 5},
},
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"start_data": TensorConfig(
data_gen=partial(generate_input)
),
"end_data": TensorConfig(data_gen=partial(generate_input1)),
"step_data": TensorConfig(
data_gen=partial(generate_input2)
),
},
outputs=["range_output_data"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
return 0, 6

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-2

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()

0 comments on commit aee2db0

Please sign in to comment.