Skip to content

Commit

Permalink
add pool2d convert test (#35923)
Browse files Browse the repository at this point in the history
* add pool2d convert test

* modify error

* modify error

* modify error

* modify error

* modify error

* modify error
  • Loading branch information
JZZ-NOTE authored Sep 24, 2021
1 parent 485b387 commit 82f255d
Show file tree
Hide file tree
Showing 7 changed files with 918 additions and 0 deletions.
13 changes: 13 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,10 @@ class Pool2dOpConverter : public OpConverter {
bool adaptive = false;
if (op_desc.HasAttr("adaptive"))
adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
std::string padding_algorithm = "EXPLICIT";
if (op_desc.HasAttr("padding_algorithm"))
padding_algorithm =
BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));

nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
nvinfer1::ReduceOperation reduce_operation =
Expand Down Expand Up @@ -124,6 +128,9 @@ class Pool2dOpConverter : public OpConverter {
pool_layer->setStride(nv_strides);
pool_layer->setPadding(nv_paddings);
pool_layer->setAverageCountExcludesPadding(exclusive);
if (padding_algorithm == "SAME") {
pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
}
layer = pool_layer;
} else if (global_pooling) {
auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
Expand Down Expand Up @@ -159,6 +166,9 @@ class Pool2dOpConverter : public OpConverter {
auto output_name = op_desc.Output("Out")[0];
pool_layer->setStride(nv_strides);
pool_layer->setPadding(nv_paddings);
if (padding_algorithm == "SAME") {
pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
}
pool_layer->setAverageCountExcludesPadding(exclusive);
pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
pool_layer->getOutput(0)->setName(output_name.c_str());
Expand Down Expand Up @@ -198,6 +208,9 @@ class Pool2dOpConverter : public OpConverter {
"trt pool layer in converter could not be created."));
pool_layer->setStride(nv_strides);
pool_layer->setPadding(nv_paddings);
if (padding_algorithm == "SAME") {
pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
}
pool_layer->setAverageCountExcludesPadding(exclusive);
layer = pool_layer;
} else {
Expand Down
20 changes: 20 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,22 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
std::vector<int> paddings =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
if (paddings.size() > 2) return false;
if (desc.HasAttr("exclusive")) {
if (BOOST_GET_CONST(bool, desc.GetAttr("exclusive"))) {
std::vector<int> ksize =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
for (size_t i = 0; i < ksize.size(); i++) {
if (ksize[i] <= paddings[i]) {
VLOG(3) << "the padding size should be less than the filter size "
"for exclusive-counting pooling.";
return false;
}
}
}
}
if (desc.HasAttr("ceil_mode")) {
if (BOOST_GET_CONST(bool, desc.GetAttr("ceil_mode"))) return false;
}
if (desc.Input("X").size() != 1) {
VLOG(3) << "TRT Pool2d expect 1 input, but got "
<< desc.Input("X").size();
Expand Down Expand Up @@ -440,6 +456,10 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
}
}

if (op_type == "anchor_generator") {
if (!with_dynamic_shape) return false;
}

if (op_type == "yolo_box") {
if (with_dynamic_shape) return false;
bool has_attrs =
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertAnchorGeneratorTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input1(batch, attrs: List[Dict[str, Any]]):
return np.random.random([batch, 3, 64, 64]).astype(np.float32)

for batch in [1, 2, 4]:
for anchor_sizes in [[64.0, 128.0, 256.0, 512.0]]:
for aspect_ratios in [[0.5, 1, 2], [0.4, 1.2, 3]]:
for variances in [[1.0, 1.0, 1.0, 1.0],
[0.5, 1.0, 0.5, 1.0]]:
for stride in [[16.0, 16.0], [16.0, 32.0]]:
for offset in [0.5, 0.8]:
dics = [{
"anchor_sizes": anchor_sizes,
"aspect_ratios": aspect_ratios,
"variances": variances,
"stride": stride,
"offset": offset
}]

ops_config = [{
"op_type": "anchor_generator",
"op_inputs": {
"Input": ["input_data"]
},
"op_outputs": {
"Anchors": ["output_anchors"],
"Variances": ["output_variances"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1,
batch, dics))
},
outputs=[
"output_anchors", "output_variances"
])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 3

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()
Loading

0 comments on commit 82f255d

Please sign in to comment.