-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add test_conv_act_mkldnn_fuse_pass (#38153)
* add test_conv_act_mkldnn_fuse_pass * update cmakelist * fix cmakelist * fix timeout * fix timeout * fix timeout * fix
- Loading branch information
1 parent
31e874b
commit 6418bc7
Showing
2 changed files
with
229 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
227 changes: 227 additions & 0 deletions
227
python/paddle/fluid/tests/unittests/ir/inference/test_conv_act_mkldnn_fuse_pass.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from auto_scan_test import PassAutoScanTest, SkipReasons | ||
from program_config import TensorConfig, ProgramConfig, OpConfig | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import Optional, List, Callable, Dict, Any, Set | ||
import unittest | ||
|
||
import hypothesis | ||
from hypothesis import given, settings, seed, example, assume, reproduce_failure | ||
import hypothesis.strategies as st | ||
|
||
|
||
class TestConvActMkldnnFusePass(PassAutoScanTest): | ||
""" | ||
x_var f_var(persistable) | ||
\ / | ||
conv2d | ||
| | ||
conv2d_var | ||
| | ||
act | ||
| | ||
act_var | ||
""" | ||
|
||
def sample_predictor_configs(self, program_config): | ||
# MKLDNN | ||
config = self.create_inference_config(use_gpu=False) | ||
config.enable_mkldnn() | ||
yield config, ["conv2d"], (1e-4, 1e-5) | ||
|
||
def is_program_valid(self, prog_config): | ||
paddings = prog_config.ops[0].attrs["paddings"] | ||
strides = prog_config.ops[0].attrs["strides"] | ||
groups = prog_config.ops[0].attrs["groups"] | ||
padding_algorithm = prog_config.ops[0].attrs["padding_algorithm"] | ||
dilations = prog_config.ops[0].attrs["dilations"] | ||
data_format = prog_config.ops[0].attrs["data_format"] | ||
filter_shape = prog_config.weights["filter"].shape | ||
input_shape = prog_config.inputs["input_x"].shape | ||
if data_format != "NCHW": | ||
return False | ||
if padding_algorithm == "VALID": | ||
if ((input_shape[2] - (dilations[0] * (filter_shape[2] - 1) + 1)) / strides[0] + 1) <= 1 or \ | ||
((input_shape[3] - (dilations[1] * (filter_shape[3] - 1) + 1)) / strides[1] + 1) <= 1: | ||
return False | ||
if padding_algorithm == "EXPLICIT": | ||
if ((input_shape[2] + paddings[0] + paddings[1] - (dilations[0] * (filter_shape[2] - 1) + 1)) / strides[0] + 1) <= 1 or \ | ||
((input_shape[3] + paddings[2] + paddings[3] - (dilations[1] * (filter_shape[3] - 1) + 1)) / strides[1] + 1) <= 1: | ||
return False | ||
if data_format == "NCHW": | ||
if input_shape[1] != filter_shape[1] * groups: | ||
return False | ||
if filter_shape[0] % groups != 0: | ||
return False | ||
else: | ||
if input_shape[3] != filter_shape[1] * groups: | ||
return False | ||
if filter_shape[0] % groups != 0: | ||
return False | ||
return True | ||
|
||
def sample_program_config(self, draw): | ||
# 1. Generate shape of input:X of conv2d | ||
x_shape = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=1, max_value=100), min_size=4, max_size=4)) | ||
x_shape[1] = draw(st.integers(min_value=1, max_value=10)) | ||
|
||
# 2. Generate legal attr:data_format of conv2d | ||
data_format = draw(st.sampled_from(["NCHW", "NHWC"])) | ||
|
||
# 3. Generate legal shape of input:Y of conv2d | ||
f_shape = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=1, max_value=7), min_size=4, max_size=4)) | ||
if data_format == "NCHW": | ||
f_shape[1] = x_shape[1] | ||
else: | ||
f_shape[1] = x_shape[3] | ||
|
||
# 4. Generate legal attr:strides of conv2d | ||
strides = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=1, max_value=5), min_size=2, max_size=2)) | ||
|
||
# 5. Generate legal attr:padding_algorithm of conv2d | ||
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"])) | ||
|
||
# 6. Generate legal attr:padding of conv2d | ||
padding = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=1, max_value=5), min_size=4, max_size=4)) | ||
|
||
# 7. Generate legal attr:groups of conv2d | ||
groups = draw(st.integers(min_value=1, max_value=3)) | ||
|
||
# 8. Generate legal attr:dilations of conv2d | ||
dilations = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=1, max_value=5), min_size=2, max_size=2)) | ||
|
||
# 9. Generate legal input:ResidualData of conv2d | ||
res_shape = [] | ||
if draw(st.booleans()): | ||
res_shape = draw( | ||
st.lists( | ||
st.integers( | ||
min_value=1, max_value=100), | ||
min_size=4, | ||
max_size=4)) | ||
|
||
# 10. Generate legal shape of input:bias of conv2d | ||
conv_bias_shape = [] | ||
inputs = dict() | ||
weights = dict() | ||
use_mkldnn = None | ||
if draw(st.booleans()): | ||
conv_bias_shape = [f_shape[0]] | ||
inputs = { | ||
"Input": ["input_x"], | ||
"Filter": ["filter"], | ||
"ResidualData": ["residualdata"], | ||
"Bias": ["conv_bias"], | ||
} | ||
weights = { | ||
"filter": TensorConfig(shape=f_shape), | ||
"conv_bias": TensorConfig(shape=conv_bias_shape) | ||
} | ||
use_mkldnn = True | ||
else: | ||
inputs = { | ||
"Input": ["input_x"], | ||
"Filter": ["filter"], | ||
"ResidualData": ["residualdata"] | ||
} | ||
weights = {"filter": TensorConfig(shape=f_shape)} | ||
use_mkldnn = False | ||
|
||
# 11. Generate legal act type of conv2d | ||
act_type = draw( | ||
st.sampled_from(["relu", "leaky_relu", "relu6", "swish"])) | ||
|
||
conv2d_op = OpConfig( | ||
"conv2d", | ||
inputs=inputs, | ||
outputs={"Output": ["conv2d_out"]}, | ||
strides=strides, | ||
padding_algorithm=padding_algorithm, | ||
paddings=padding, | ||
groups=groups, | ||
dilations=dilations, | ||
data_format=data_format, | ||
use_mkldnn=True) | ||
|
||
# 11. Generate legal attr of act | ||
act_op = None | ||
self.passes = None | ||
if act_type == "relu6": | ||
self.passes = ["conv_relu6_mkldnn_fuse_pass"] | ||
threshold = draw(st.floats(min_value=1.0, max_value=10.0)) | ||
act_op = OpConfig( | ||
"relu6", | ||
inputs={"X": ["conv2d_out"]}, | ||
outputs={"Out": ["relu_out"]}, | ||
threshold=threshold) | ||
if act_type == "leaky_relu": | ||
self.passes = ["conv_leaky_relu_mkldnn_fuse_pass"] | ||
alpha = draw(st.floats(min_value=0.1, max_value=1.0)) | ||
act_op = OpConfig( | ||
"leaky_relu", | ||
inputs={"X": ["conv2d_out"]}, | ||
outputs={"Out": ["relu_out"]}, | ||
alpha=alpha) | ||
if act_type == "relu": | ||
self.passes = ["conv_relu_mkldnn_fuse_pass"] | ||
act_op = OpConfig( | ||
"relu", | ||
inputs={"X": ["conv2d_out"]}, | ||
outputs={"Out": ["relu_out"]}) | ||
if act_type == "swish": | ||
self.passes = ["conv_swish_mkldnn_fuse_pass"] | ||
beta = draw(st.floats(min_value=0.1, max_value=1.0)) | ||
act_op = OpConfig( | ||
"swish", | ||
inputs={"X": ["conv2d_out"]}, | ||
outputs={"Out": ["swish_out"]}, | ||
beta=beta) | ||
|
||
ops = [conv2d_op, act_op] | ||
|
||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights=weights, | ||
inputs={ | ||
"input_x": TensorConfig(shape=x_shape), | ||
"residualdata": TensorConfig(shape=res_shape) | ||
}, | ||
outputs=ops[-1].outputs["Out"], ) | ||
return program_config | ||
|
||
def test(self): | ||
self.run_and_statis(quant=False, max_examples=300, passes=self.passes) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |