-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Paddle Inference]Add BN op TRT converter unittest (#35527)
* add_bn_ * add_bn_teller * add_bn_teller * add_bn_teller * add_bn_teller
- Loading branch information
1 parent
e93228e
commit 39bc7ea
Showing
2 changed files
with
226 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
220 changes: 220 additions & 0 deletions
220
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_batch_norm.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons | ||
from program_config import TensorConfig, ProgramConfig | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import Optional, List, Callable, Dict, Any, Set | ||
|
||
|
||
class TrtConvertBatchNormTest(TrtLayerAutoScanTest): | ||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
return True | ||
|
||
def sample_program_configs(self): | ||
def generate_input1(attrs: List[Dict[str, Any]], batch): | ||
if self.dims == 4: | ||
if attrs[0]['data_layout'] == "NCHW": | ||
return np.ones([batch, 3, 24, 24]).astype(np.float32) | ||
elif attrs[0]['data_layout'] == "NHWC": | ||
return np.ones([batch, 24, 24, 3]).astype(np.float32) | ||
elif self.dims == 3: | ||
return np.ones([batch, 3, 24]).astype(np.float32) | ||
elif self.dims == 2: | ||
return np.ones([batch, 3]).astype(np.float32) | ||
|
||
def generate_bias(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 0.9).astype("float32") | ||
|
||
def generate_mean(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 0.9).astype("float32") | ||
|
||
def generate_scale(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 1.1).astype("float32") | ||
|
||
def generate_variance(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 1.2).astype("float32") | ||
|
||
def generate_MomentumTensor(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 0.9).astype("float32") | ||
|
||
for dims in [2, 3, 4]: | ||
for num_input in [0, 1]: | ||
for batch in [1, 2, 4]: | ||
for epsilon in [1e-6, 1e-5, 1e-4]: | ||
for data_layout in ["NCHW"]: | ||
for momentum in [0.9, 0.8]: | ||
self.num_input = num_input | ||
self.dims = dims | ||
dics = [{ | ||
"epsilon": epsilon, | ||
"data_layout": data_layout, | ||
"momentum": momentum, | ||
"is_test": True, | ||
"trainable_statistics": False | ||
}, {}] | ||
dics_intput = [{ | ||
"X": ["batch_norm_input"], | ||
"Bias": ["Bias"], | ||
"Mean": ["Mean"], | ||
"Scale": ["Scale"], | ||
"Variance": ["Variance"], | ||
"MomentumTensor": ["MomentumTensor"] | ||
}, { | ||
"X": ["batch_norm_input"], | ||
"Bias": ["Bias"], | ||
"Mean": ["Mean"], | ||
"Scale": ["Scale"], | ||
"Variance": ["Variance"] | ||
}] | ||
dics_intputs = [{ | ||
"Bias": TensorConfig(data_gen=partial( | ||
generate_bias, dics, batch)), | ||
"Mean": TensorConfig(data_gen=partial( | ||
generate_mean, dics, batch)), | ||
"Scale": TensorConfig(data_gen=partial( | ||
generate_scale, dics, batch)), | ||
"Variance": TensorConfig(data_gen=partial( | ||
generate_variance, dics, batch)), | ||
"MomentumTensor": | ||
TensorConfig(data_gen=partial( | ||
generate_MomentumTensor, dics, batch)), | ||
}, { | ||
"Bias": TensorConfig(data_gen=partial( | ||
generate_bias, dics, batch)), | ||
"Mean": TensorConfig(data_gen=partial( | ||
generate_mean, dics, batch)), | ||
"Scale": TensorConfig(data_gen=partial( | ||
generate_scale, dics, batch)), | ||
"Variance": TensorConfig(data_gen=partial( | ||
generate_variance, dics, batch)) | ||
}] | ||
ops_config = [{ | ||
"op_type": "batch_norm", | ||
"op_inputs": dics_intput[num_input], | ||
"op_outputs": { | ||
"Y": ["batch_norm_out"], | ||
"MeanOut": ["Mean"], | ||
"VarianceOut": ["Variance"], | ||
"SavedMean": ["SavedMean"], | ||
"SavedVariance": ["SavedVariance"] | ||
}, | ||
"op_attrs": dics[0] | ||
}] | ||
ops = self.generate_op_config(ops_config) | ||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights=dics_intputs[num_input], | ||
inputs={ | ||
"batch_norm_input": TensorConfig( | ||
data_gen=partial(generate_input1, | ||
dics, batch)) | ||
}, | ||
outputs=["batch_norm_out"]) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config) -> (paddle_infer.Config, List[int], float): | ||
def generate_dynamic_shape(attrs): | ||
if self.dims == 4: | ||
if attrs[0]['data_layout'] == "NCHW": | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 3, 24, 24] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 3, 48, 48] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 3, 24, 48] | ||
} | ||
elif attrs[0]['data_layout'] == "NHWC": | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 24, 24, 3] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 48, 48, 3] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 24, 48, 3] | ||
} | ||
elif self.dims == 3: | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 3, 24] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 3, 48] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 3, 48] | ||
} | ||
elif self.dims == 2: | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 3] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 3] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 3] | ||
} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
return 1, 2 | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs | ||
for i in range(len(program_config.ops)) | ||
] | ||
# for static_shape | ||
clear_dynamic_shape() | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False), 1e-5 | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num(attrs, | ||
True), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num(attrs, | ||
True), 1e-5 | ||
|
||
def add_skip_trt_case(self): | ||
def teller1(program_config, predictor_config): | ||
if len(program_config.weights) == 5: | ||
return True | ||
return False | ||
|
||
self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT, | ||
"INPUT MomentumTensor NOT SUPPORT") | ||
|
||
def test(self): | ||
self.add_skip_trt_case() | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |