Skip to content

Commit

Permalink
[KP] Unify .cu and .xpu files with .kps files (#39917)
Browse files Browse the repository at this point in the history
* [KP] Unify .cu and .xpu files with .kps files

* fix CI bug in GPU and modify the list

* fix conflict

* modify the date
  • Loading branch information
Liu-xiandong authored Feb 28, 2022
1 parent 2753c16 commit 0ff72e5
Show file tree
Hide file tree
Showing 5 changed files with 59 additions and 181 deletions.
12 changes: 12 additions & 0 deletions cmake/operators.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,12 @@ function(op_library TARGET)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu)
list(APPEND cu_srcs ${TARGET}.cu)
endif()
# rename in KP: .kps -> .cu
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.kps)
file(COPY ${TARGET}.kps DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
file(RENAME ${CMAKE_CURRENT_BINARY_DIR}/${TARGET}.kps ${CMAKE_CURRENT_BINARY_DIR}/${TARGET}.cu)
list(APPEND cu_srcs ${CMAKE_CURRENT_BINARY_DIR}/${TARGET}.cu)
endif()
if (WITH_NV_JETSON)
list(REMOVE_ITEM cu_srcs "decode_jpeg_op.cu")
endif()
Expand All @@ -96,6 +102,12 @@ function(op_library TARGET)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu)
list(APPEND hip_srcs ${TARGET}.cu)
endif()
# rename in KP: .kps -> .cu
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.kps)
file(COPY ${TARGET}.kps DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
file(RENAME ${CMAKE_CURRENT_BINARY_DIR}/${TARGET}.kps ${CMAKE_CURRENT_BINARY_DIR}/${TARGET}.cu)
list(APPEND hip_srcs ${CMAKE_CURRENT_BINARY_DIR}/${TARGET}.cu)
endif()
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.part.cu)
set(PART_CUDA_KERNEL_FILES ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.part.cu
${PART_CUDA_KERNEL_FILES} PARENT_SCOPE)
Expand Down
29 changes: 0 additions & 29 deletions paddle/fluid/operators/elementwise/elementwise_add_op.cu

This file was deleted.

23 changes: 21 additions & 2 deletions paddle/fluid/operators/elementwise/elementwise_add_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -13,22 +13,40 @@ See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#ifdef __xpu__
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#else
#include <algorithm>
#include <utility>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"

// only can include the headers in paddle/phi/include dirs
#include "paddle/phi/kernels/elementwise_grad_kernel.h"
#include "paddle/phi/kernels/math_kernel.h"
#endif

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ElementwiseAddKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
void Compute(const framework::ExecutionContext& ctx) const override {
#ifdef __xpu__
std::vector<const framework::Tensor*> ins;
std::vector<framework::Tensor*> outs;
int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
const auto& xpu_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T,
T, kps::AddFunctor<T>, 1>(
xpu_ctx, ins, &outs, axis, kps::AddFunctor<T>());
#else
auto *x = ctx.Input<framework::LoDTensor>("X");
auto *y = ctx.Input<framework::LoDTensor>("Y");
auto *z = ctx.Output<framework::LoDTensor>("Out");
Expand All @@ -40,6 +58,7 @@ class ElementwiseAddKernel : public framework::OpKernel<T> {
static_cast<const typename framework::ConvertToPtenContext<
DeviceContext>::TYPE &>(dev_ctx),
*x, *y, axis, z);
#endif
}
};

Expand Down
171 changes: 22 additions & 149 deletions paddle/fluid/operators/elementwise/elementwise_add_op.kps
Original file line number Diff line number Diff line change
@@ -1,14 +1,19 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU_KP

// Please do not modify the following code
#if defined(__CUDA_ARCH__)
#undef __CUDA_ARCH__
Expand All @@ -26,163 +31,31 @@ limitations under the License. */
#undef __NVCC__
#endif

#ifdef PADDLE_WITH_XPU_KP
#include <xpu/runtime.h> // NOLINT
#include "xpu/kernel/cluster_header.h" // NOLINT
#include "xpu/kernel/debug.h" // NOLINT
#include "xpu/kernel/math.h" // NOLINT

#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
#include "paddle/fluid/platform/device/device_wrapper.h"

namespace paddle {
namespace operators {

template <typename T>
class ElementwiseAddXPUKPKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
std::vector<const framework::Tensor*> ins;
std::vector<framework::Tensor*> outs;
int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
const auto& xpu_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T,
T, kps::AddFunctor<T>, 1>(
xpu_ctx, ins, &outs, axis, kps::AddFunctor<T>());
}
};

static std::vector<int> get_rdims(const std::vector<int>& xdims,
const std::vector<int>& ydims) {
std::vector<int> rdims;
for (size_t i = 0; i < xdims.size(); i++) {
if (xdims[i] != ydims[i]) {
rdims.push_back(i);
}
}
return rdims;
}

template <typename T>
class ElementwiseAddGradXPUKPKernel : public ElemwiseGradKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;

public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* dz = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
const framework::DDim& x_dims = x->dims();
const framework::DDim& y_dims = y->dims();
const framework::DDim& dz_dims = dz->dims();
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
int max_dim = std::max(x_dims.size(), y_dims.size());
PADDLE_ENFORCE_GE(
axis, 0,
platform::errors::InvalidArgument(
"Axis should be great than or equal to 0, but received axis is %d.",
axis));
PADDLE_ENFORCE_LT(
axis, max_dim,
platform::errors::InvalidArgument(
"Axis should be less than %d, but received axis is %d.", max_dim,
axis));

std::vector<int> x_dims_vec(max_dim, 1);
std::vector<int> y_dims_vec(max_dim, 1);
std::vector<int> z_dims_vec(max_dim, 1);
if (x_dims.size() == max_dim) {
for (int i = 0; i < max_dim; i++) {
x_dims_vec[i] = x_dims[i];
}
} else {
for (int i = 0; i < x_dims.size(); i++) {
x_dims_vec[i + axis] = x_dims[i];
}
}

if (y_dims.size() == max_dim) {
for (int i = 0; i < max_dim; i++) {
y_dims_vec[i] = y_dims[i];
}
} else {
for (int i = 0; i < y_dims.size(); i++) {
y_dims_vec[i + axis] = y_dims[i];
}
}

for (int i = 0; i < max_dim; i++) {
z_dims_vec[i] = dz_dims[i];
}
std::vector<int> rdims_for_x;
std::vector<int> rdims_for_y;
rdims_for_x = get_rdims(x_dims_vec, z_dims_vec);
rdims_for_y = get_rdims(y_dims_vec, z_dims_vec);
const T* dz_data = dz->data<T>();
auto& dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();

if (dx != nullptr) {
T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
if (rdims_for_x.size() == 0) {
if (dx_data != dz_data) {
framework::TensorCopy(
*dz, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dx);
}
} else {
// For inplace strategy, dx will be stored in addr of dz, which makes
// the result of dy wrong.
if (dx->IsSharedBufferWith(*dz)) {
dx->clear();
dx->mutable_data<T>(x->dims(), ctx.GetPlace());
}

int ret = xpu::reduce_sum<XPUType>(
dev_ctx.x_context(), reinterpret_cast<const XPUType*>(dz_data),
reinterpret_cast<XPUType*>(dx_data), z_dims_vec, rdims_for_x);
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "reduce_sum ");
}
}

if (dy != nullptr) {
T* dy_data = dy->mutable_data<T>(ctx.GetPlace());
if (rdims_for_y.size() == 0) {
if (dy_data != dz_data) {
framework::TensorCopy(
*dz, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dy);
}
} else {
int ret = xpu::reduce_sum<XPUType>(
dev_ctx.x_context(), reinterpret_cast<const XPUType*>(dz_data),
reinterpret_cast<XPUType*>(dy_data), z_dims_vec, rdims_for_y);
PADDLE_ENFORCE_XDNN_SUCCESS(ret, "reduce_sum ");
}
}
}
};

} // namespace operators
} // namespace paddle
#else
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/phi/kernels/gpu/elementwise.h"
#endif

namespace ops = paddle::operators;
namespace plat = paddle::platform;

#ifdef PADDLE_WITH_XPU_KP
REGISTER_OP_KERNEL(elementwise_add, KP, plat::XPUPlace,
ops::ElementwiseAddXPUKPKernel<float>);

REGISTER_OP_KERNEL(elementwise_add_grad, KP, plat::XPUPlace,
ops::ElementwiseAddGradXPUKPKernel<float>);

#endif // PADDLE_WITH_XPU_KP
ops::ElementwiseAddKernel<plat::XPUDeviceContext, float>);
#else
REGISTER_OP_CUDA_KERNEL(
grad_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::bfloat16>,
ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<float>>,
ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<double>>);
#endif
5 changes: 4 additions & 1 deletion paddle/fluid/platform/device/xpu/xpu_op_kpfirst_list.h
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,10 @@ using XPUKernelSet =
using XPUOpMap = std::unordered_map<std::string, XPUKernelSet>;

XPUOpMap& get_kp_ops() {
static XPUOpMap s_xpu_kp_kernels{};
static XPUOpMap s_xpu_kp_kernels{
{"elementwise_add",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
};

return s_xpu_kp_kernels;
}
Expand Down

0 comments on commit 0ff72e5

Please sign in to comment.