This repository has been archived by the owner on Jan 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5 from hedaoyuan/master
Add a inference demo
- Loading branch information
Showing
2 changed files
with
185 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Inference demo | ||
|
||
This is an inference demo program based on the Paddle C API. But this demo is based on the c++ code, so need to use g++ or clang++ to compile. | ||
The demo can be run from the command line and used to test the inference performance of various models. | ||
|
||
## Android | ||
To compile and run this demo in the Android environment, follow these steps: | ||
|
||
1. Refer to [this document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/cross_compiling/cross_compiling_for_android_cn.md) to compile the paddle of android version. | ||
2. Compile this inference.cc to an executable program for the Android environment. | ||
3. Run the demo program by logging into the Android environment via adb and specifying the paddle model from the command line. | ||
``` | ||
./inference --merged_model ./model/mobilenet.paddle --input_size 150528 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <iostream> | ||
#include <time.h> | ||
#include <stdio.h> | ||
#include <stdlib.h> | ||
#include <paddle/capi.h> | ||
|
||
inline paddle_error& operator |=(paddle_error& a, paddle_error b) { | ||
return a = | ||
static_cast<paddle_error>(static_cast<int>(a) | static_cast<int>(b)); | ||
} | ||
|
||
class Timer { | ||
public: | ||
Timer(std::string name, int iter = 1) : name_(name), iter_(iter) { | ||
clock_gettime(CLOCK_MONOTONIC, &tp_start); | ||
} | ||
~Timer() { | ||
struct timespec tp_end; | ||
clock_gettime(CLOCK_MONOTONIC, &tp_end); | ||
float time = ((tp_end.tv_nsec - tp_start.tv_nsec)/1000000.0f); | ||
time += (tp_end.tv_sec - tp_start.tv_sec)*1000; | ||
time /= iter_; | ||
std::cout << "Time of " << name_ << " " << time << " ms." << std::endl; | ||
} | ||
|
||
private: | ||
std::string name_; | ||
int iter_; | ||
struct timespec tp_start; | ||
}; | ||
|
||
void read_file(const char* file, void** buf, long* size) { | ||
FILE* fp = fopen(file, "r"); | ||
if (fp) { | ||
if (fseek(fp, 0L, SEEK_END) == 0) { | ||
*size = ftell(fp); | ||
fseek(fp, 0L, SEEK_SET); | ||
*buf = malloc(*size); | ||
fread(*buf, 1, *size, fp); | ||
} | ||
} | ||
fclose(fp); | ||
} | ||
|
||
int main(int argc, char* argv[]) { | ||
// parse command line arguments | ||
std::string predict_config; | ||
std::string predict_model; | ||
std::string merged_model; | ||
int input_size; | ||
for (int i = 1; i < argc; ++i) { | ||
if (std::string(argv[i]) == "--predict_config") { | ||
predict_config = std::string(argv[++i]); | ||
} else if (std::string(argv[i]) == "--predict_model") { | ||
predict_model = std::string(argv[++i]); | ||
} else if (std::string(argv[i]) == "--merged_model") { | ||
merged_model = std::string(argv[++i]); | ||
} else if (std::string(argv[i]) == "--input_size") { | ||
input_size = atoi(argv[++i]); | ||
} | ||
} | ||
|
||
{ | ||
Timer time("init paddle"); | ||
char* argv[] = {"--use_gpu=False"}; | ||
if (paddle_init(1, (char**)argv) != kPD_NO_ERROR) { | ||
std::cout << "paddle init error!" << std::endl; | ||
} | ||
} | ||
|
||
// Create a gradient machine for inference. | ||
paddle_gradient_machine machine; | ||
paddle_error error = kPD_NO_ERROR; | ||
if (!merged_model.empty()) { | ||
Timer time("create from merged model file"); | ||
long size = 0; | ||
void* buf = NULL; | ||
read_file(merged_model.c_str(), &buf, &size); | ||
paddle_gradient_machine_create_for_inference_with_parameters( | ||
&machine, buf, size); | ||
free(buf); | ||
} else { | ||
// Reading config binary file. It is generated by `convert_protobin.sh` | ||
if (predict_config.empty()) return -1; | ||
long size = 0; | ||
void* buf = NULL; | ||
{ | ||
Timer time("read model config"); | ||
read_file(predict_config.c_str(), &buf, &size); | ||
} | ||
|
||
error |= | ||
paddle_gradient_machine_create_for_inference(&machine, buf, (int)size); | ||
|
||
if (predict_model.empty()) { | ||
error |= paddle_gradient_machine_randomize_param(machine); | ||
} else { | ||
Timer time("load model parameter"); | ||
error |= paddle_gradient_machine_load_parameter_from_disk( | ||
machine, predict_model.c_str()); | ||
} | ||
free(buf); | ||
} | ||
|
||
if (error != kPD_NO_ERROR) { | ||
std::cout << "paddle create inference machine error!" << std::endl; | ||
} | ||
|
||
// Create input matrix. | ||
paddle_arguments in_args = paddle_arguments_create_none(); | ||
error |= paddle_arguments_resize(in_args, 1); | ||
paddle_matrix mat = paddle_matrix_create(/* sample_num */ 1, | ||
/* size */ input_size, | ||
/* useGPU */ false); | ||
srand(time(0)); | ||
paddle_real* array; | ||
// Get First row. | ||
error |= paddle_matrix_get_row(mat, 0, &array); | ||
|
||
for (int i = 0; i < input_size; ++i) { | ||
array[i] = rand() / ((float)RAND_MAX); | ||
} | ||
|
||
error |= paddle_arguments_set_value(in_args, 0, mat); | ||
|
||
paddle_arguments out_args = paddle_arguments_create_none(); | ||
|
||
if (error != kPD_NO_ERROR) { | ||
std::cout << "paddle init input data!" << std::endl; | ||
} | ||
|
||
error |= paddle_gradient_machine_forward(machine, | ||
in_args, | ||
out_args, | ||
/* isTrain */ false); | ||
|
||
{ | ||
Timer time("forward time", 20); | ||
for (int i = 0; i < 20; i++) { | ||
error |= paddle_gradient_machine_forward(machine, | ||
in_args, | ||
out_args, | ||
/* isTrain */ false); | ||
} | ||
} | ||
|
||
if (error != kPD_NO_ERROR) { | ||
std::cout << "paddle forward error!" << std::endl; | ||
} | ||
|
||
paddle_arguments_destroy(out_args); | ||
paddle_matrix_destroy(mat); | ||
paddle_arguments_destroy(in_args); | ||
paddle_gradient_machine_destroy(machine); | ||
|
||
return 0; | ||
} |