Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Commit

Permalink
Merge pull request #5 from hedaoyuan/master
Browse files Browse the repository at this point in the history
Add a inference demo
  • Loading branch information
hedaoyuan authored Sep 21, 2017
2 parents f401777 + adc5a29 commit a3419c4
Show file tree
Hide file tree
Showing 2 changed files with 185 additions and 0 deletions.
14 changes: 14 additions & 0 deletions inference/C/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# Inference demo

This is an inference demo program based on the Paddle C API. But this demo is based on the c++ code, so need to use g++ or clang++ to compile.
The demo can be run from the command line and used to test the inference performance of various models.

## Android
To compile and run this demo in the Android environment, follow these steps:

1. Refer to [this document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/cross_compiling/cross_compiling_for_android_cn.md) to compile the paddle of android version.
2. Compile this inference.cc to an executable program for the Android environment.
3. Run the demo program by logging into the Android environment via adb and specifying the paddle model from the command line.
```
./inference --merged_model ./model/mobilenet.paddle --input_size 150528
```
171 changes: 171 additions & 0 deletions inference/C/inference.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <iostream>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <paddle/capi.h>

inline paddle_error& operator |=(paddle_error& a, paddle_error b) {
return a =
static_cast<paddle_error>(static_cast<int>(a) | static_cast<int>(b));
}

class Timer {
public:
Timer(std::string name, int iter = 1) : name_(name), iter_(iter) {
clock_gettime(CLOCK_MONOTONIC, &tp_start);
}
~Timer() {
struct timespec tp_end;
clock_gettime(CLOCK_MONOTONIC, &tp_end);
float time = ((tp_end.tv_nsec - tp_start.tv_nsec)/1000000.0f);
time += (tp_end.tv_sec - tp_start.tv_sec)*1000;
time /= iter_;
std::cout << "Time of " << name_ << " " << time << " ms." << std::endl;
}

private:
std::string name_;
int iter_;
struct timespec tp_start;
};

void read_file(const char* file, void** buf, long* size) {
FILE* fp = fopen(file, "r");
if (fp) {
if (fseek(fp, 0L, SEEK_END) == 0) {
*size = ftell(fp);
fseek(fp, 0L, SEEK_SET);
*buf = malloc(*size);
fread(*buf, 1, *size, fp);
}
}
fclose(fp);
}

int main(int argc, char* argv[]) {
// parse command line arguments
std::string predict_config;
std::string predict_model;
std::string merged_model;
int input_size;
for (int i = 1; i < argc; ++i) {
if (std::string(argv[i]) == "--predict_config") {
predict_config = std::string(argv[++i]);
} else if (std::string(argv[i]) == "--predict_model") {
predict_model = std::string(argv[++i]);
} else if (std::string(argv[i]) == "--merged_model") {
merged_model = std::string(argv[++i]);
} else if (std::string(argv[i]) == "--input_size") {
input_size = atoi(argv[++i]);
}
}

{
Timer time("init paddle");
char* argv[] = {"--use_gpu=False"};
if (paddle_init(1, (char**)argv) != kPD_NO_ERROR) {
std::cout << "paddle init error!" << std::endl;
}
}

// Create a gradient machine for inference.
paddle_gradient_machine machine;
paddle_error error = kPD_NO_ERROR;
if (!merged_model.empty()) {
Timer time("create from merged model file");
long size = 0;
void* buf = NULL;
read_file(merged_model.c_str(), &buf, &size);
paddle_gradient_machine_create_for_inference_with_parameters(
&machine, buf, size);
free(buf);
} else {
// Reading config binary file. It is generated by `convert_protobin.sh`
if (predict_config.empty()) return -1;
long size = 0;
void* buf = NULL;
{
Timer time("read model config");
read_file(predict_config.c_str(), &buf, &size);
}

error |=
paddle_gradient_machine_create_for_inference(&machine, buf, (int)size);

if (predict_model.empty()) {
error |= paddle_gradient_machine_randomize_param(machine);
} else {
Timer time("load model parameter");
error |= paddle_gradient_machine_load_parameter_from_disk(
machine, predict_model.c_str());
}
free(buf);
}

if (error != kPD_NO_ERROR) {
std::cout << "paddle create inference machine error!" << std::endl;
}

// Create input matrix.
paddle_arguments in_args = paddle_arguments_create_none();
error |= paddle_arguments_resize(in_args, 1);
paddle_matrix mat = paddle_matrix_create(/* sample_num */ 1,
/* size */ input_size,
/* useGPU */ false);
srand(time(0));
paddle_real* array;
// Get First row.
error |= paddle_matrix_get_row(mat, 0, &array);

for (int i = 0; i < input_size; ++i) {
array[i] = rand() / ((float)RAND_MAX);
}

error |= paddle_arguments_set_value(in_args, 0, mat);

paddle_arguments out_args = paddle_arguments_create_none();

if (error != kPD_NO_ERROR) {
std::cout << "paddle init input data!" << std::endl;
}

error |= paddle_gradient_machine_forward(machine,
in_args,
out_args,
/* isTrain */ false);

{
Timer time("forward time", 20);
for (int i = 0; i < 20; i++) {
error |= paddle_gradient_machine_forward(machine,
in_args,
out_args,
/* isTrain */ false);
}
}

if (error != kPD_NO_ERROR) {
std::cout << "paddle forward error!" << std::endl;
}

paddle_arguments_destroy(out_args);
paddle_matrix_destroy(mat);
paddle_arguments_destroy(in_args);
paddle_gradient_machine_destroy(machine);

return 0;
}

0 comments on commit a3419c4

Please sign in to comment.