Skip to content

Commit

Permalink
updating toml to force scikit-image 0.24
Browse files Browse the repository at this point in the history
  • Loading branch information
jgostick committed Jan 15, 2025
1 parent 8dfe673 commit 51b82d1
Show file tree
Hide file tree
Showing 3 changed files with 29 additions and 16 deletions.
4 changes: 2 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -34,14 +34,14 @@ dependencies = [
"pandas",
"psutil",
"rich",
"scikit-image",
"scikit-image<0.25.0",
"scipy",
"tqdm",
"pywavelets",
"setuptools",
]
readme = "README.md"
requires-python = ">= 3.8"
requires-python = ">= 3.10"

[project.optional-dependencies]
build = ["hatch"]
Expand Down
24 changes: 17 additions & 7 deletions test/unit/test_filters.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from edt import edt
import porespy as ps
import scipy.ndimage as spim
from skimage.morphology import disk, ball, skeletonize
from skimage.morphology import disk, ball
from skimage.util import random_noise
from scipy.stats import norm
ps.settings.tqdm['disable'] = True
Expand Down Expand Up @@ -466,24 +466,33 @@ def test_chunked_func_w_ill_defined_filter(self):
overlap=5)

def test_prune_branches(self):
im = ps.generators.lattice_spheres(shape=[100, 100, 100], r=4)
from skimage.morphology import skeletonize
im = ps.generators.random_spheres([100, 100, 100], r=4, seed=0)
skel1 = skeletonize(im)
skel2 = ps.filters.prune_branches(skel1)
assert skel1.sum() > skel2.sum()

def test_prune_branches_n2(self):
im = ps.generators.lattice_spheres(shape=[100, 100, 100], r=4)
from skimage.morphology import skeletonize
im = ps.generators.random_spheres([100, 100, 100], r=4, seed=0)
skel1 = skeletonize(im)
skel2 = ps.filters.prune_branches(skel1, iterations=1)
skel3 = ps.filters.prune_branches(skel1, iterations=2)
assert skel1.sum() > skel2.sum()
assert skel2.sum() == skel3.sum()
assert skel2.sum() > skel3.sum()
skel4 = ps.filters.prune_branches(skel1, iterations=3)
assert skel3.sum() > skel4.sum()

def test_apply_padded(self):
from skimage.morphology import skeletonize
im = ps.generators.blobs(shape=[100, 100])
skel1 = skeletonize(im)
skel2 = ps.filters.apply_padded(im=im, pad_width=20, pad_val=1,
func=skeletonize)
skel2 = ps.filters.apply_padded(
im=im,
pad_width=20,
pad_val=1,
func=skeletonize,
)
assert (skel1.astype(bool)).sum() != (skel2.astype(bool)).sum()

def test_trim_small_clusters(self):
Expand Down Expand Up @@ -514,7 +523,8 @@ def test_hold_peaks_algorithm(self):

def test_nl_means_layered(self):
im = ps.generators.blobs(shape=[50, 50, 50], blobiness=.5)
im2 = random_noise(im, seed=0)
np.random.seed(0)
im2 = random_noise(im)
filt = ps.filters.nl_means_layered(im=im2)
p1 = (filt[0, ...] > 0.5).sum()
p2 = (im[0, ...]).sum()
Expand Down
17 changes: 10 additions & 7 deletions test/unit/test_network_size_factor.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,7 @@

class NetworkSizeFactorTest():
def setup_class(self):
np.random.seed(10)
im = ps.generators.blobs(shape=[50, 50, 50])
im = ps.generators.blobs(shape=[50, 50, 50], seed=10)
self.im = im[:15, :15, :15]
self.snow = ps.networks.snow2(self.im, boundary_width=0,
parallelization=None)
Expand All @@ -15,8 +14,10 @@ def test_diffusive_size_factor_DNS(self):
regions = self.snow.regions
net = self.snow.network
conns = net['throat.conns']
size_factors = ps.networks.diffusive_size_factor_DNS(regions,
throat_conns=conns)
size_factors = ps.networks.diffusive_size_factor_DNS(
regions,
throat_conns=conns,
)
values = np.array([1.43456123, 0.9612569, 1.22389664,
0.14359343, 0.18617079, 1.30144843,
0.22238891, 1.32222092])
Expand All @@ -27,9 +28,11 @@ def test_diffusive_size_factor_DNS_voxel_size(self):
regions = self.snow.regions
net = self.snow.network
conns = net['throat.conns']
size_factors = ps.networks.diffusive_size_factor_DNS(regions,
throat_conns=conns,
voxel_size=voxel_size)
size_factors = ps.networks.diffusive_size_factor_DNS(
regions,
throat_conns=conns,
voxel_size=voxel_size,
)
values = np.array([1.43456123, 0.9612569, 1.22389664,
0.14359343, 0.18617079, 1.30144843,
0.22238891, 1.32222092])*voxel_size
Expand Down

0 comments on commit 51b82d1

Please sign in to comment.