Skip to content

PKU-ML/Generalist

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generalist: Decoupling Natural and Robust Generalization

Official implementation for CVPR'23 paper "Generalist: Decoupling Natural and Robust Generalization"

Prerequisites

  • Python (>=3.7)
  • Pytorch (>=1.5)
  • Torchvision
  • CUDA
  • Numpy
  • AutoAttack

Training and Testing

  • Train ResNet-18 on CIFAR10:
  $ CUDA_VISIBLE_DEVICES={your GPU number} python3 main.py 
  • Train WRN-32-10 on CIFAR10
  $ CUDA_VISIBLE_DEVICES={your GPU number} python3 main.py --arch 'WRN32'

Then, it will automatically run all the robustness evaluation in our paper, including NAT, PGD20/100, MIM, CW, APGDce, APGDdlr, APGDt, FABt, Square and AutoAttack.

Pretrained model

Citation

If you are interested in our work, please consider citing the related paper:

@inproceedings{wang2023simple,
  title={Generalist: Decoupling Natural and Robust Generalization},
  author={Hongjun Wang and Yisen Wang},
  booktitle={CVPR},
  year={2023}
}

@inproceedings{wang2022selfensemble,
  title={Self-ensemble Adversarial Training for Improved Robustness},
  author={Hongjun Wang and Yisen Wang},
  booktitle={ICLR},
  year={2022}
}

About

CVPR 2023 generalist

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%