Skip to content

Commit

Permalink
Rewrite comments using superscript for avoid confusion with xor opera…
Browse files Browse the repository at this point in the history
…tor (#4903)
  • Loading branch information
Amxx authored Feb 16, 2024
1 parent 140d66f commit 3def8f9
Showing 1 changed file with 15 additions and 15 deletions.
30 changes: 15 additions & 15 deletions contracts/utils/math/Math.sol
Original file line number Diff line number Diff line change
Expand Up @@ -127,9 +127,9 @@ library Math {
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
Expand All @@ -145,7 +145,7 @@ library Math {
return prod0 / denominator;
}

// Make sure the result is less than 2^256. Also prevents denominator == 0.
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
Expand Down Expand Up @@ -176,30 +176,30 @@ library Math {
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)

// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}

// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;

// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv 1 mod 2.
uint256 inverse = (3 * denominator) ^ 2;

// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
inverse *= 2 - denominator * inverse; // inverse mod 2
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
Expand Down

0 comments on commit 3def8f9

Please sign in to comment.