Skip to content

Commit

Permalink
Update tensorrt
Browse files Browse the repository at this point in the history
  • Loading branch information
Weiyun1025 committed Mar 27, 2023
1 parent 5074fa3 commit eb62e04
Show file tree
Hide file tree
Showing 22 changed files with 998 additions and 96 deletions.
120 changes: 72 additions & 48 deletions README.md

Large diffs are not rendered by default.

120 changes: 72 additions & 48 deletions README_EN.md

Large diffs are not rendered by default.

32 changes: 32 additions & 0 deletions detection/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -100,3 +100,35 @@ For example, to train `InternImage-L` with 32 GPU on 4 node, run:
```bash
GPUS=32 sh slurm_train.sh <partition> <job-name> configs/coco/cascade_internimage_xl_fpn_3x_coco.py work_dirs/cascade_internimage_xl_fpn_3x_coco
```

### Export

To export a detection model from PyTorch to TensorRT, run:
```shell
MODEL="model_name"
CKPT_PATH="/path/to/model/ckpt.pth"

python deploy.py \
"./deploy/configs/mmdet/instance-seg/instance-seg_tensorrt_dynamic-320x320-1344x1344.py" \
"./configs/coco/${MODEL}.py" \
"${CKPT_PATH}" \
"./deploy/demo.jpg" \
--work-dir "./work_dirs/mmdet/instance-seg/${MODEL}" \
--device cuda \
--dump-info
```

For example, to export `mask_rcnn_internimage_t_fpn_1x_coco` from PyTorch to TensorRT, run:
```shell
MODEL="mask_rcnn_internimage_t_fpn_1x_coco"
CKPT_PATH="/path/to/model/ckpt/mask_rcnn_internimage_t_fpn_1x_coco.pth"

python deploy.py \
"./deploy/configs/mmdet/instance-seg/instance-seg_tensorrt_dynamic-320x320-1344x1344.py" \
"./configs/coco/${MODEL}.py" \
"${CKPT_PATH}" \
"./deploy/demo.jpg" \
--work-dir "./work_dirs/mmdet/instance-seg/${MODEL}" \
--device cuda \
--dump-info
```
310 changes: 310 additions & 0 deletions detection/deploy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,310 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import os
import os.path as osp
from functools import partial

import mmcv
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method

from mmdeploy.apis import (create_calib_input_data, extract_model,
get_predefined_partition_cfg, torch2onnx,
torch2torchscript, visualize_model)
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.apis.utils import to_backend
from mmdeploy.backend.sdk.export_info import export2SDK
from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename,
get_ir_config, get_partition_config,
get_root_logger, load_config, target_wrapper)

import mmcv_custom
import mmdet_custom

def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img',
default=None,
type=str,
nargs='+',
help='image used to test model')
parser.add_argument(
'--work-dir',
default=os.getcwd(),
help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help=('dataset config path used to calibrate in int8 mode. If not '
'specified, it will use "val" dataset in model config instead.'),
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
parser.add_argument(
'--quant-image-dir',
default=None,
help='Image directory for quantize model.')
parser.add_argument(
'--quant', action='store_true', help='Quantize model to low bit.')
parser.add_argument(
'--uri',
default='192.168.1.1:60000',
help='Remote ipv4:port or ipv6:port for inference on edge device.')
args = parser.parse_args()
return args


def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level

wrap_func = partial(target_wrapper, target, log_level, ret_value)

process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()

if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit(1)
else:
logger.info(f'{name} success.')


def torch2ir(ir_type: IR):
"""Return the conversion function from torch to the intermediate
representation.
Args:
ir_type (IR): The type of the intermediate representation.
"""
if ir_type == IR.ONNX:
return torch2onnx
elif ir_type == IR.TORCHSCRIPT:
return torch2torchscript
else:
raise KeyError(f'Unexpected IR type {ir_type}')


def main():
args = parse_args()
set_start_method('spawn', force=True)
logger = get_root_logger()
log_level = logging.getLevelName(args.log_level)
logger.setLevel(log_level)

pipeline_funcs = [
torch2onnx, torch2torchscript, extract_model, create_calib_input_data
]
PIPELINE_MANAGER.enable_multiprocess(True, pipeline_funcs)
PIPELINE_MANAGER.set_log_level(log_level, pipeline_funcs)

deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
quant = args.quant
quant_image_dir = args.quant_image_dir

# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)

# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))

if args.dump_info:
export2SDK(
deploy_cfg,
model_cfg,
args.work_dir,
pth=checkpoint_path,
device=args.device)

ret_value = mp.Value('d', 0, lock=False)

# convert to IR
ir_config = get_ir_config(deploy_cfg)
ir_save_file = ir_config['save_file']
ir_type = IR.get(ir_config['type'])
torch2ir(ir_type)(
args.img,
args.work_dir,
ir_save_file,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
device=args.device)

# convert backend
ir_files = [osp.join(args.work_dir, ir_save_file)]

# partition model
partition_cfgs = get_partition_config(deploy_cfg)

if partition_cfgs is not None:

if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])

origin_ir_file = ir_files[0]
ir_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)

extract_model(
origin_ir_file,
start,
end,
dynamic_axes=dynamic_axes,
save_file=save_path)

ir_files.append(save_path)

# calib data
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_calib_input_data(
calib_path,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device)

backend_files = ir_files
# convert backend
backend = get_backend(deploy_cfg)

# preprocess deploy_cfg
if backend == Backend.RKNN:
# TODO: Add this to task_processor in the future
import tempfile

from mmdeploy.utils import (get_common_config, get_normalization,
get_quantization_config,
get_rknn_quantization)
quantization_cfg = get_quantization_config(deploy_cfg)
common_params = get_common_config(deploy_cfg)
if get_rknn_quantization(deploy_cfg) is True:
transform = get_normalization(model_cfg)
common_params.update(
dict(
mean_values=[transform['mean']],
std_values=[transform['std']]))

dataset_file = tempfile.NamedTemporaryFile(suffix='.txt').name
with open(dataset_file, 'w') as f:
f.writelines([osp.abspath(args.img)])
quantization_cfg.setdefault('dataset', dataset_file)
if backend == Backend.ASCEND:
# TODO: Add this to backend manager in the future
if args.dump_info:
from mmdeploy.backend.ascend import update_sdk_pipeline
update_sdk_pipeline(args.work_dir)

# convert to backend
PIPELINE_MANAGER.set_log_level(log_level, [to_backend])
if backend == Backend.TENSORRT:
PIPELINE_MANAGER.enable_multiprocess(True, [to_backend])
backend_files = to_backend(
backend,
ir_files,
work_dir=args.work_dir,
deploy_cfg=deploy_cfg,
log_level=log_level,
device=args.device,
uri=args.uri)

# ncnn quantization
if backend == Backend.NCNN and quant:
from onnx2ncnn_quant_table import get_table

from mmdeploy.apis.ncnn import get_quant_model_file, ncnn2int8
model_param_paths = backend_files[::2]
model_bin_paths = backend_files[1::2]
backend_files = []
for onnx_path, model_param_path, model_bin_path in zip(
ir_files, model_param_paths, model_bin_paths):

deploy_cfg, model_cfg = load_config(deploy_cfg_path,
model_cfg_path)
quant_onnx, quant_table, quant_param, quant_bin = get_quant_model_file( # noqa: E501
onnx_path, args.work_dir)

create_process(
'ncnn quant table',
target=get_table,
args=(onnx_path, deploy_cfg, model_cfg, quant_onnx,
quant_table, quant_image_dir, args.device),
kwargs=dict(),
ret_value=ret_value)

create_process(
'ncnn_int8',
target=ncnn2int8,
args=(model_param_path, model_bin_path, quant_table,
quant_param, quant_bin),
kwargs=dict(),
ret_value=ret_value)
backend_files += [quant_param, quant_bin]

if args.test_img is None:
args.test_img = args.img

extra = dict(
backend=backend,
output_file=osp.join(args.work_dir, f'output_{backend.value}.jpg'),
show_result=args.show)
if backend == Backend.SNPE:
extra['uri'] = args.uri

# get backend inference result, try render
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files, args.test_img,
args.device),
kwargs=extra,
ret_value=ret_value)

# get pytorch model inference result, try visualize if possible
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path],
args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
logger.info('All process success.')


if __name__ == '__main__':
main()
2 changes: 2 additions & 0 deletions detection/deploy/configs/_base_/backends/tensorrt-fp16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
backend_config = dict(
type='tensorrt', common_config=dict(fp16_mode=True, max_workspace_size=0))
2 changes: 2 additions & 0 deletions detection/deploy/configs/_base_/backends/tensorrt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
backend_config = dict(
type='tensorrt', common_config=dict(fp16_mode=False, max_workspace_size=0))
10 changes: 10 additions & 0 deletions detection/deploy/configs/_base_/onnx_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
onnx_config = dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
save_file='end2end.onnx',
input_names=['input'],
output_names=['output'],
input_shape=None,
optimize=True)
17 changes: 17 additions & 0 deletions detection/deploy/configs/mmdet/_base_/base_dynamic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
_base_ = ['./base_static.py']
onnx_config = dict(
dynamic_axes={
'input': {
0: 'batch',
2: 'height',
3: 'width'
},
'dets': {
0: 'batch',
1: 'num_dets',
},
'labels': {
0: 'batch',
1: 'num_dets',
},
}, )
Loading

0 comments on commit eb62e04

Please sign in to comment.