TWINT - More practical (and optimized) use with Elasticsearch and Kibana
See also Twint Flask-Celery Server for http server
- Python3, Twint
- Elasticsearch
- Kibana
-
Create ES index with index-tweets.json
-
Gather tweets containing keyword (3 ways)
twint -s "<keyword>" --since 2019-1-1 -es localhost:9200 -it <es index name> --count
- Twint Flask-Celery Server
- Optimized (but better use sever)
-
Create Kibana Index Pattern
-
(optional) Add scripted field
shared_url_base
to Kibana Index Pattern using painless_url_base.txt -
Generate visualization and import in Kibana Saved Objects
python3 elasticsearch/generate_visualizations.py <Kibana index patter id> -n <optional (index)name>
- Share responsive size Embeded iFrame with template iframe_sampleword.html
-
New parametars:
-rd Request Days
and-mi Maximum Instances to run
. -
python3 utils/otwint.py -s "<keyword>" --since 2019-1-1 --until 2019-2-1 -es localhost:9200 -it "<es index name>" -rd 1 -mi 4
- Enable regex. In
/etc/elasticsearch/elasticsearch.yml
add linescript.painless.regex.enabled: true
user_created_at
(python script)- resolve short urls (bit.ly,..) (python script)
After user enter parametars keyword
, since datetime
, until datetime
do in backround