Skip to content

Nedja995/twint_kibana

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TWINT - More practical (and optimized) use with Elasticsearch and Kibana

See also Twint Flask-Celery Server for http server

Table of Contents

  1. Analyze keywords tutorial
  2. Share dashboard
  3. Optimized twint use
  4. Tips

Requirements

  • Python3, Twint
  • Elasticsearch
  • Kibana

Analyze keywords tutorial

  1. Create ES index with index-tweets.json

  2. Gather tweets containing keyword (3 ways)

  1. Create Kibana Index Pattern

  2. (optional) Add scripted field shared_url_base to Kibana Index Pattern using painless_url_base.txt

  3. Generate visualization and import in Kibana Saved Objects
    python3 elasticsearch/generate_visualizations.py <Kibana index patter id> -n <optional (index)name>

Share dashboard

Optimized twint use

  • New parametars: -rd Request Days and -mi Maximum Instances to run.

  • python3 utils/otwint.py -s "<keyword>" --since 2019-1-1 --until 2019-2-1 -es localhost:9200 -it "<es index name>" -rd 1 -mi 4

Tips

  • Enable regex. In /etc/elasticsearch/elasticsearch.yml add line script.painless.regex.enabled: true

TODO

  • user_created_at (python script)
  • resolve short urls (bit.ly,..) (python script)

TODO: Automatize

After user enter parametars keyword, since datetime, until datetime do in backround

  1. create ES index
  2. create Kibana index pattern Ref Ref 2
  3. get new Kibana index id
  4. generate visualizations
  5. import visualization to Kibana Saved Objects
  6. Kibana dashboard ready