Skip to content

Commit

Permalink
WIP: Connectivity Constraint for Adjoint Solver (#1624)
Browse files Browse the repository at this point in the history
* slight clean up meep.i

* 3d connectivity

* typo

* rm T0

* rm T0

* clean up

* clean up

* fix

* fix

Co-authored-by: Mo Chen <mochen@MacBook-Pro-2.local>
Co-authored-by: Mo Chen <mochen@Mos-MacBook-Pro.local>
  • Loading branch information
3 people authored Oct 13, 2021
1 parent 5de8230 commit 16f4526
Show file tree
Hide file tree
Showing 3 changed files with 145 additions and 0 deletions.
1 change: 1 addition & 0 deletions python/Makefile.am
Original file line number Diff line number Diff line change
Expand Up @@ -232,6 +232,7 @@ adjoint_PYTHON = $(srcdir)/adjoint/__init__.py \
$(srcdir)/adjoint/optimization_problem.py \
$(srcdir)/adjoint/filters.py \
$(srcdir)/adjoint/filter_source.py \
$(srcdir)/adjoint/connectivity.py \
$(srcdir)/adjoint/wrapper.py \
$(srcdir)/adjoint/utils.py

Expand Down
2 changes: 2 additions & 0 deletions python/adjoint/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@

from .filters import *

from .connectivity import *

from . import utils

try:
Expand Down
142 changes: 142 additions & 0 deletions python/adjoint/connectivity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
"""
Connectivity constraint inspired by https://link.springer.com/article/10.1007/s00158-016-1459-5
Solve and find adjoint gradients for [-div (k grad) + alpha^2 (1-rho)k + alpha0^2]T=0.
BC: Dirichlet on last slice rho[-Nx*Ny:], 0 outside the first slice, and Neumann on sides.
Mo Chen <mochen@mit.edu>
"""

import numpy as np
from scipy.sparse.linalg import cg, spsolve
from scipy.sparse import kron, diags, csr_matrix, eye, csc_matrix, lil_matrix
from scipy.linalg import norm
import matplotlib.pyplot as plt
class ConnectivityConstraint(object):
def __init__(self, nx, ny, nz, k0=1000, zeta=0, sp_solver=cg, alpha=None, alpha0=None, thresh=0.1, p=2):
#zeta is to prevent singularity when damping is zero; with damping, zeta should be zero
#set ny=1 for 2D
self.nx, self.ny, self.nz= nx, ny, nz
self.n = nx*ny*nz
self.m = nx*ny*(nz-1)
self.solver = sp_solver
self.k0, self.zeta = k0, zeta
self.thresh = thresh
self.p = p

#default alpha and alpha0
if alpha != None:
self.alpha=alpha
else:
self.alpha = 0.1*min(1/nx, 1/ny, 1/nz)
if alpha0 != None:
self.alpha0 = alpha0
else:
self.alpha0 = -np.log(thresh)/min(nx, nz)

def forward(self, rho_vector):
self.rho_vector = rho_vector
# gradient and -div operator
gx = diags([-1,1], [0,1], shape=(self.nx-1, self.nx), format='csr')
dx = gx.copy().transpose()
gy = diags([-1,1], [0,1], shape=(self.ny-1, self.ny), format='csr')
dy = gy.copy().transpose()
gz = diags([1,-1], [0, -1], shape=(self.nz, self.nz), format='csr')
dz = diags([1,-1], [0, 1], shape=(self.nz-1, self.nz), format='csr')

# kron product for 2D
Ix, Iy, Iz = eye(self.nx), eye(self.ny), eye(self.nz-1)
self.gx, self.gy, self.gz = kron(Iz, kron(Iy, gx)), kron(Iz, kron(gy, Ix)), kron(gz, kron(Iy,Ix))
self.dx, self.dy, self.dz = kron(Iz, kron(Iy, dx)), kron(Iz, kron(dy, Ix)), kron(dz, kron(Iy, Ix))

#conductivity based on rho
rho_pad = np.reshape(rho_vector, (self.nz, self.ny, self.nx))
rhox = np.array([0.5*(rho_pad[k, j, i]+rho_pad[k, j, i+1]) for k in range(self.nz-1) for j in range(self.ny) for i in range(self.nx-1)])
self.rhox = rhox
rhoy = np.array([0.5*(rho_pad[k, j, i]+rho_pad[k, j+1, i]) for k in range(self.nz-1) for j in range(self.ny-1) for i in range(self.nx)])
self.rhoy = rhoy
rhoz = np.array([0.5*(rho_pad[k, j, i]+rho_pad[k+1, j, i]) for k in range(self.nz-1) for j in range(self.ny) for i in range(self.nx)])
rhoz = np.insert(rhoz, [0]*self.nx*self.ny, 0)#0 outside first row
self.rhoz = rhoz
kx, ky, kz = diags((self.zeta+(1-self.zeta)*rhox)*self.k0), diags((self.zeta+(1-self.zeta)*rhoy)*self.k0), diags((self.zeta+(1-self.zeta)*rhoz)*self.k0)
self.kx, self.ky, self.kz = kx, ky, kz
#matrices in x, y, z
self.Lx, self.Ly, self.Lz = self.dx * kx * self.gx, self.dy * ky * self.gy, self.dz * kz * self.gz

# Dirichlet condition on the last row becomes term on the RHS
Bz = csc_matrix(self.Lz)[:,-self.nx*self.ny:]
rhs = -Bz.sum(axis=1)
self.rhs=rhs

#LHS operator after moving the boundary term to the RHS
eq = self.Lz[:, :-self.nx*self.ny]+self.Lx+self.Ly
self.eq=eq
#add damping
damping = self.k0*self.alpha**2*diags(1-rho_vector[:-self.nx*self.ny]) + diags([self.alpha0**2], shape=(self.m, self.m))
self.A = eq + damping
self.damping = damping
self.T, sinfo = self.solver(csr_matrix(self.A), rhs)
#exclude last row of rho and calculate weighted average of temperature
self.rho_vec = rho_vector[:-self.nx*self.ny]

self.Td_p = (1 - self.T)**self.p
self.Td = (sum(self.Td_p * self.rho_vec)/sum(self.rho_vec))**(1/self.p)
return self.Td

def adjoint(self):
T_p1 = -(self.T-1) ** (self.p-1)
dg_dT = self.Td**(1-self.p) * (T_p1*self.rho_vec)/sum(self.rho_vec)
return self.solver(csr_matrix(self.A.transpose()), dg_dT)

def calculate_grad(self):
dg_dp = np.zeros(self.n)
dg_dp[:-self.nx*self.ny] = (self.Td_p*sum(self.rho_vec))/sum(self.rho_vec)**2
dg_dp[:-self.nx*self.ny] = dg_dp[:-self.nx*self.ny] - sum(self.Td_p*self.rho_vec)/sum(self.rho_vec)**2
dg_dp = self.Td ** (1-self.p) * dg_dp / self.p

dAx = lil_matrix((self.m, self.n))
gxT = np.reshape(self.gx * self.T, (-1,1))
drhox = kron(eye(self.nz-1), kron(eye(self.ny), diags([0.5,0.5], [0, 1], shape=[self.nx-1,self.nx])))
dAx[:, :-self.nx*self.ny] = (1-self.zeta)*self.k0*lil_matrix(self.dx * drhox.multiply(gxT)) #element-wise product

dAy = lil_matrix((self.m, self.n))
gyT = np.reshape(self.gy * self.T, (-1,1))
drhoy = kron(kron(eye(self.nz-1), diags([0.5,0.5], [0, 1], shape=[self.ny-1,self.ny])), eye(self.nx))
dAy[:, :-self.nx*self.ny] = (1-self.zeta)*self.k0*lil_matrix(self.dy * drhoy.multiply(gyT)) #element-wise product

Tz = np.pad(self.T, (0, self.nx*self.ny), 'constant', constant_values=1)
gzTz = np.reshape(self.gz * Tz, (-1,1))
drhoz = diags([0.5,0.5], [0, -1], shape=[self.nz,self.nz], format="lil")
drhoz[0,0]=0
drhoz = kron(drhoz,eye(self.nx*self.ny))
dAz = (1-self.zeta)*self.k0*self.dz * drhoz.multiply(gzTz)
d_damping = self.k0*self.alpha**2*diags(-self.T, shape=(self.m, self.n))

self.grad = dg_dp + self.adjoint().reshape(1, -1) * csr_matrix( - dAz - dAx - dAy - d_damping)
return self.grad[0]

def __call__(self, rho_vector):
Td = self.forward(rho_vector)
grad = self.calculate_grad()
return Td-self.thresh, grad

def calculate_fd_grad(self, rho_vector, num, db=1e-4):
fdidx = np.random.choice(self.n, num)
fdgrad = []
for k in fdidx:
rho_vector[k]+=db
fp = self.forward(rho_vector)
rho_vector[k]-=2*db
fm = self.forward(rho_vector)
fdgrad.append((fp-fm)/(2*db))
rho_vector[k]+=db
return fdidx, fdgrad

def calculate_all_fd_grad(self, rho_vector, db=1e-4):
fdgrad = []
for k in range(self.n):
rho_vector[k]+=db
fp = self.forward(rho_vector)
rho_vector[k]-=2*db
fm = self.forward(rho_vector)
fdgrad.append((fp-fm)/(2*db))
rho_vector[k]+=db
return range(self.n), np.array(fdgrad)

0 comments on commit 16f4526

Please sign in to comment.