-
Notifications
You must be signed in to change notification settings - Fork 638
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
WIP: Connectivity Constraint for Adjoint Solver (#1624)
* slight clean up meep.i * 3d connectivity * typo * rm T0 * rm T0 * clean up * clean up * fix * fix Co-authored-by: Mo Chen <mochen@MacBook-Pro-2.local> Co-authored-by: Mo Chen <mochen@Mos-MacBook-Pro.local>
- Loading branch information
1 parent
5de8230
commit 16f4526
Showing
3 changed files
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,6 +13,8 @@ | |
|
||
from .filters import * | ||
|
||
from .connectivity import * | ||
|
||
from . import utils | ||
|
||
try: | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
""" | ||
Connectivity constraint inspired by https://link.springer.com/article/10.1007/s00158-016-1459-5 | ||
Solve and find adjoint gradients for [-div (k grad) + alpha^2 (1-rho)k + alpha0^2]T=0. | ||
BC: Dirichlet on last slice rho[-Nx*Ny:], 0 outside the first slice, and Neumann on sides. | ||
Mo Chen <mochen@mit.edu> | ||
""" | ||
|
||
import numpy as np | ||
from scipy.sparse.linalg import cg, spsolve | ||
from scipy.sparse import kron, diags, csr_matrix, eye, csc_matrix, lil_matrix | ||
from scipy.linalg import norm | ||
import matplotlib.pyplot as plt | ||
class ConnectivityConstraint(object): | ||
def __init__(self, nx, ny, nz, k0=1000, zeta=0, sp_solver=cg, alpha=None, alpha0=None, thresh=0.1, p=2): | ||
#zeta is to prevent singularity when damping is zero; with damping, zeta should be zero | ||
#set ny=1 for 2D | ||
self.nx, self.ny, self.nz= nx, ny, nz | ||
self.n = nx*ny*nz | ||
self.m = nx*ny*(nz-1) | ||
self.solver = sp_solver | ||
self.k0, self.zeta = k0, zeta | ||
self.thresh = thresh | ||
self.p = p | ||
|
||
#default alpha and alpha0 | ||
if alpha != None: | ||
self.alpha=alpha | ||
else: | ||
self.alpha = 0.1*min(1/nx, 1/ny, 1/nz) | ||
if alpha0 != None: | ||
self.alpha0 = alpha0 | ||
else: | ||
self.alpha0 = -np.log(thresh)/min(nx, nz) | ||
|
||
def forward(self, rho_vector): | ||
self.rho_vector = rho_vector | ||
# gradient and -div operator | ||
gx = diags([-1,1], [0,1], shape=(self.nx-1, self.nx), format='csr') | ||
dx = gx.copy().transpose() | ||
gy = diags([-1,1], [0,1], shape=(self.ny-1, self.ny), format='csr') | ||
dy = gy.copy().transpose() | ||
gz = diags([1,-1], [0, -1], shape=(self.nz, self.nz), format='csr') | ||
dz = diags([1,-1], [0, 1], shape=(self.nz-1, self.nz), format='csr') | ||
|
||
# kron product for 2D | ||
Ix, Iy, Iz = eye(self.nx), eye(self.ny), eye(self.nz-1) | ||
self.gx, self.gy, self.gz = kron(Iz, kron(Iy, gx)), kron(Iz, kron(gy, Ix)), kron(gz, kron(Iy,Ix)) | ||
self.dx, self.dy, self.dz = kron(Iz, kron(Iy, dx)), kron(Iz, kron(dy, Ix)), kron(dz, kron(Iy, Ix)) | ||
|
||
#conductivity based on rho | ||
rho_pad = np.reshape(rho_vector, (self.nz, self.ny, self.nx)) | ||
rhox = np.array([0.5*(rho_pad[k, j, i]+rho_pad[k, j, i+1]) for k in range(self.nz-1) for j in range(self.ny) for i in range(self.nx-1)]) | ||
self.rhox = rhox | ||
rhoy = np.array([0.5*(rho_pad[k, j, i]+rho_pad[k, j+1, i]) for k in range(self.nz-1) for j in range(self.ny-1) for i in range(self.nx)]) | ||
self.rhoy = rhoy | ||
rhoz = np.array([0.5*(rho_pad[k, j, i]+rho_pad[k+1, j, i]) for k in range(self.nz-1) for j in range(self.ny) for i in range(self.nx)]) | ||
rhoz = np.insert(rhoz, [0]*self.nx*self.ny, 0)#0 outside first row | ||
self.rhoz = rhoz | ||
kx, ky, kz = diags((self.zeta+(1-self.zeta)*rhox)*self.k0), diags((self.zeta+(1-self.zeta)*rhoy)*self.k0), diags((self.zeta+(1-self.zeta)*rhoz)*self.k0) | ||
self.kx, self.ky, self.kz = kx, ky, kz | ||
#matrices in x, y, z | ||
self.Lx, self.Ly, self.Lz = self.dx * kx * self.gx, self.dy * ky * self.gy, self.dz * kz * self.gz | ||
|
||
# Dirichlet condition on the last row becomes term on the RHS | ||
Bz = csc_matrix(self.Lz)[:,-self.nx*self.ny:] | ||
rhs = -Bz.sum(axis=1) | ||
self.rhs=rhs | ||
|
||
#LHS operator after moving the boundary term to the RHS | ||
eq = self.Lz[:, :-self.nx*self.ny]+self.Lx+self.Ly | ||
self.eq=eq | ||
#add damping | ||
damping = self.k0*self.alpha**2*diags(1-rho_vector[:-self.nx*self.ny]) + diags([self.alpha0**2], shape=(self.m, self.m)) | ||
self.A = eq + damping | ||
self.damping = damping | ||
self.T, sinfo = self.solver(csr_matrix(self.A), rhs) | ||
#exclude last row of rho and calculate weighted average of temperature | ||
self.rho_vec = rho_vector[:-self.nx*self.ny] | ||
|
||
self.Td_p = (1 - self.T)**self.p | ||
self.Td = (sum(self.Td_p * self.rho_vec)/sum(self.rho_vec))**(1/self.p) | ||
return self.Td | ||
|
||
def adjoint(self): | ||
T_p1 = -(self.T-1) ** (self.p-1) | ||
dg_dT = self.Td**(1-self.p) * (T_p1*self.rho_vec)/sum(self.rho_vec) | ||
return self.solver(csr_matrix(self.A.transpose()), dg_dT) | ||
|
||
def calculate_grad(self): | ||
dg_dp = np.zeros(self.n) | ||
dg_dp[:-self.nx*self.ny] = (self.Td_p*sum(self.rho_vec))/sum(self.rho_vec)**2 | ||
dg_dp[:-self.nx*self.ny] = dg_dp[:-self.nx*self.ny] - sum(self.Td_p*self.rho_vec)/sum(self.rho_vec)**2 | ||
dg_dp = self.Td ** (1-self.p) * dg_dp / self.p | ||
|
||
dAx = lil_matrix((self.m, self.n)) | ||
gxT = np.reshape(self.gx * self.T, (-1,1)) | ||
drhox = kron(eye(self.nz-1), kron(eye(self.ny), diags([0.5,0.5], [0, 1], shape=[self.nx-1,self.nx]))) | ||
dAx[:, :-self.nx*self.ny] = (1-self.zeta)*self.k0*lil_matrix(self.dx * drhox.multiply(gxT)) #element-wise product | ||
|
||
dAy = lil_matrix((self.m, self.n)) | ||
gyT = np.reshape(self.gy * self.T, (-1,1)) | ||
drhoy = kron(kron(eye(self.nz-1), diags([0.5,0.5], [0, 1], shape=[self.ny-1,self.ny])), eye(self.nx)) | ||
dAy[:, :-self.nx*self.ny] = (1-self.zeta)*self.k0*lil_matrix(self.dy * drhoy.multiply(gyT)) #element-wise product | ||
|
||
Tz = np.pad(self.T, (0, self.nx*self.ny), 'constant', constant_values=1) | ||
gzTz = np.reshape(self.gz * Tz, (-1,1)) | ||
drhoz = diags([0.5,0.5], [0, -1], shape=[self.nz,self.nz], format="lil") | ||
drhoz[0,0]=0 | ||
drhoz = kron(drhoz,eye(self.nx*self.ny)) | ||
dAz = (1-self.zeta)*self.k0*self.dz * drhoz.multiply(gzTz) | ||
d_damping = self.k0*self.alpha**2*diags(-self.T, shape=(self.m, self.n)) | ||
|
||
self.grad = dg_dp + self.adjoint().reshape(1, -1) * csr_matrix( - dAz - dAx - dAy - d_damping) | ||
return self.grad[0] | ||
|
||
def __call__(self, rho_vector): | ||
Td = self.forward(rho_vector) | ||
grad = self.calculate_grad() | ||
return Td-self.thresh, grad | ||
|
||
def calculate_fd_grad(self, rho_vector, num, db=1e-4): | ||
fdidx = np.random.choice(self.n, num) | ||
fdgrad = [] | ||
for k in fdidx: | ||
rho_vector[k]+=db | ||
fp = self.forward(rho_vector) | ||
rho_vector[k]-=2*db | ||
fm = self.forward(rho_vector) | ||
fdgrad.append((fp-fm)/(2*db)) | ||
rho_vector[k]+=db | ||
return fdidx, fdgrad | ||
|
||
def calculate_all_fd_grad(self, rho_vector, db=1e-4): | ||
fdgrad = [] | ||
for k in range(self.n): | ||
rho_vector[k]+=db | ||
fp = self.forward(rho_vector) | ||
rho_vector[k]-=2*db | ||
fm = self.forward(rho_vector) | ||
fdgrad.append((fp-fm)/(2*db)) | ||
rho_vector[k]+=db | ||
return range(self.n), np.array(fdgrad) |