Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support SDXL and its distributed inference #1514

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions examples/stable_diffusion/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Stable Diffusion XL

This document elaborates how to build the [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model to runnable engines on single or multiple GPUs and perform a image generation task using these engines.

The design of distributed parallel inference comes from the CVPR 2024 paper [Distrifusion](https://github.com/mit-han-lab/distrifuser). In order to reduce the difficulty of implementation, all communications in the example are synchronous.

## Usage

### 1. Build TensorRT Engine(s)

```bash
# 1 gpu
python build_sdxl_unet.py --size 1024

# 2 gpus
mpirun -n 2 python build_sdxl_unet.py --size 1024
```

### 2. Generate images using the engine(s)


```bash
# 1 gpu
python run_sdxl.py --size 1024 --prompt "flowers, rabbit"

# 2 gpus
mpirun -n 2 python run_sdxl.py --size 1024 --prompt "flowers, rabbit"
```
144 changes: 144 additions & 0 deletions examples/stable_diffusion/build_sdxl_unet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
import argparse
import os

import tensorrt as trt
import torch
from diffusers import DiffusionPipeline

import tensorrt_llm
from tensorrt_llm.builder import Builder
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.unet.pp.unet_pp import DistriUNetPP
from tensorrt_llm.models.unet.unet_2d_condition import UNet2DConditionModel
from tensorrt_llm.models.unet.weights import load_from_hf_unet
from tensorrt_llm.network import net_guard

parser = argparse.ArgumentParser(description='build the UNet TensorRT engine.')
parser.add_argument('--size', type=int, default=1024, help='image size')
parser.add_argument('--output_dir',
type=str,
default=None,
help='output directory')

args = parser.parse_args()

size = args.size
sample_size = size // 8

world_size = tensorrt_llm.mpi_world_size()
rank = tensorrt_llm.mpi_rank()
output_dir = f'sdxl_s{size}_w{world_size}' if args.output_dir is None else args.output_dir
if rank == 0 and not os.path.exists(output_dir):
os.makedirs(output_dir)

device_per_batch = world_size // 2 if world_size > 1 else 1
batch_group = 2 if world_size > 1 else 1

# Use tp_size to indicate the size of patch parallelism
# Use pp_size to indicate the size of batch parallelism
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=device_per_batch,
pp_size=batch_group)

torch.cuda.set_device(tensorrt_llm.mpi_rank())

tensorrt_llm.logger.set_level('verbose')
builder = Builder()
builder_config = builder.create_builder_config(
name='UNet2DConditionModel',
precision='float16',
timing_cache='model.cache',
profiling_verbosity='detailed',
tensor_parallel=world_size,
precision_constraints=
None, # do not use obey or the precision error will be too large
)

pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
model = UNet2DConditionModel(
sample_size=sample_size,
in_channels=4,
out_channels=4,
center_input_sample=False,
flip_sin_to_cos=True,
freq_shift=0,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D",
"CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
block_out_channels=(320, 640, 1280),
layers_per_block=2,
downsample_padding=1,
mid_block_scale_factor=1.0,
act_fn="silu",
norm_num_groups=32,
norm_eps=1e-5,
cross_attention_dim=2048,
attention_head_dim=[5, 10, 20],
addition_embed_type="text_time",
addition_time_embed_dim=256,
projection_class_embeddings_input_dim=2816,
transformer_layers_per_block=[1, 2, 10],
use_linear_projection=True,
dtype=trt.float16,
)

load_from_hf_unet(pipeline.unet, model)
model = DistriUNetPP(model, mapping)

# Module -> Network
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if mapping.world_size > 1:
network.plugin_config.set_nccl_plugin('float16')

with net_guard(network):
# Prepare
network.set_named_parameters(model.named_parameters())

# Forward
sample = tensorrt_llm.Tensor(
name='sample',
dtype=trt.float16,
shape=[2, 4, sample_size, sample_size],
)
timesteps = tensorrt_llm.Tensor(
name='timesteps',
dtype=trt.float16,
shape=[
1,
],
)
encoder_hidden_states = tensorrt_llm.Tensor(
name='encoder_hidden_states',
dtype=trt.float16,
shape=[2, 77, 2048],
)
text_embeds = tensorrt_llm.Tensor(
name='text_embeds',
dtype=trt.float16,
shape=[2, 1280],
)
time_ids = tensorrt_llm.Tensor(
name='time_ids',
dtype=trt.float16,
shape=[2, 6],
)

output = model(sample, timesteps, encoder_hidden_states, text_embeds,
time_ids)

# Mark outputs
output_dtype = trt.float16
output.mark_output('pred', output_dtype)

# Network -> Engine
engine = builder.build_engine(network, builder_config)
assert engine is not None, 'Failed to build engine.'

engine_name = f'sdxl_unet_s{size}_w{world_size}_r{rank}.engine'
engine_path = os.path.join(output_dir, engine_name)
with open(engine_path, 'wb') as f:
f.write(engine)
builder.save_config(builder_config, os.path.join(output_dir, 'config.json'))
Loading