Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add documentation regarding neural type system. #370

Merged
merged 8 commits into from
Feb 20, 2020
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 138 additions & 36 deletions docs/sources/source/tutorials/neuraltypes.rst
Original file line number Diff line number Diff line change
@@ -1,63 +1,166 @@
Neural Types
============

Neural Types are used to check input tensors to make sure that two neural modules are compatible, and catch
semantic and dimensionality errors.
Basics
~~~~~~

Neural Types are implemented by :class:`NeuralType<nemo.core.neural_types.NeuralType>` class which is a mapping from Tensor's axis to :class:`AxisType<nemo.core.neural_types.AxisType>`.
All input and output ports of every neural module in NeMo are typed.
The type system's goal is check compatibility of connected input/output port pairs.
The type system's constraints are checked when the user connects modules with each other and before any training or
inference is started.

:class:`AxisType<nemo.core.neural_types.AxisType>` contains following information per axis:
Neural Types are implemented with the Python class :class:`NeuralType<nemo.core.neural_types.NeuralType>` and helper
classes derived from :class:`ElementType<nemo.core.neural_types.ElementType>`, :class:`AxisType<nemo.core
.neural_types.AxisType>` and :class:`AxisKindAbstract<nemo.core.neural_types.AxisKindAbstract>`.

* Semantic Tag, which must inherit from :class:`BaseTag<nemo.core.neural_types.BaseTag>`, for example: :class:`BatchTag<nemo.core.neural_types.BatchTag>`, :class:`ChannelTag<nemo.core.neural_types.ChannelTag>`, :class:`TimeTag<nemo.core.neural_types.TimeTag>`, etc. These tags can be related via `is-a` inheritance.
* Dimension: unsigned integer
* Descriptor: string
**A Neural Type contains two categories of information:**

* **axes** - represents what varying a particular axis means (e.g. batch, time, etc.)
* **elements_type** - represents the semantics and properties of what is stored inside the activations (audio signal,text embedding, logits, etc.)

To instantiate a NeuralType you should pass it a dictionary (axis2type) which will map axis to it's AxisType.
For example, a ResNet18 input and output ports can be described as:

To instantiate a NeuralType you need to pass it the following arguments: `axes: Optional[Tuple] = None,
elements_type: ElementType = VoidType(), optional=False`. Typically, the only place where you need to instantiate
:class:`NeuralType<nemo.core.neural_types.NeuralType>` objects are inside your module's `input_ports` and
`output_ports` properties.


Consider an example below. It represents an (audio) data layer output ports, used in Speech recognition collection.

.. code-block:: python

input_ports = {"x": NeuralType({0: AxisType(BatchTag),
1: AxisType(ChannelTag),
2: AxisType(HeightTag, 224),
3: AxisType(WidthTag, 224)})}
output_ports = {"output": NeuralType({
0: AxisType(BatchTag),
1: AxisType(ChannelTag)})}
{
'audio_signal': NeuralType(axes=(AxisType(kind=AxisKind.Batch, size=None, is_list=False),
AxisType(kind=AxisKind.Time, size=None, is_list=False)),
elements_type=AudioSignal(freq=self._sample_rate)),
'a_sig_length': NeuralType(axes=tuple(AxisType(kind=AxisKind.Batch, size=None, is_list=False)),
elements_type=LengthsType()),
'transcripts': NeuralType(axes=(AxisType(kind=AxisKind.Batch, size=None, is_list=False),
AxisType(kind=AxisKind.Time, size=None, is_list=False)),
elements_type=LabelsType()),
'transcript_length': NeuralType(axes=tuple(AxisType(kind=AxisKind.Batch, size=None, is_list=False)),
elements_type=LengthsType()),
}

A less verbose version of exactly the same output ports looks like this:

.. code-block:: python

{
'audio_signal': NeuralType(('B', 'T'), AudioSignal(freq=self._sample_rate)),
'a_sig_length': NeuralType(tuple('B'), LengthsType()),
'transcripts': NeuralType(('B', 'T'), LabelsType()),
'transcript_length': NeuralType(tuple('B'), LengthsType()),
}

**Neural type comparison**

Two :class:`NeuralType<nemo.core.neural_types.NeuralType>` objects can be compared using ``.compare`` method.
The result is:

Neural type comparison
~~~~~~~~~~~~~~~~~~~~~~

Two :class:`NeuralType<nemo.core.neural_types.NeuralType>` objects are compared using ``.compare`` method.
The result is from the :class:`NeuralTypeComparisonResult<nemo.core.neural_types.NeuralTypeComparisonResult>`:

.. code-block:: python

class NeuralTypeComparisonResult(Enum):
"""The result of comparing two neural type objects for compatibility.
When comparing A.compare_to(B):"""
SAME = 0
LESS = 1 # A is B
GREATER = 2 # B is A
DIM_INCOMPATIBLE = 3 # Resize connector might fix incompatibility
TRANSPOSE_SAME = 4 # A transpose will make them same
INCOMPATIBLE = 5 # A and B are incompatible. Can't fix incompatibility automatically
"""The result of comparing two neural type objects for compatibility.
When comparing A.compare_to(B):"""

SAME = 0
LESS = 1 # A is B
GREATER = 2 # B is A
DIM_INCOMPATIBLE = 3 # Resize connector might fix incompatibility
TRANSPOSE_SAME = 4 # A transpose and/or converting between lists and tensors will make them same
CONTAINER_SIZE_MISMATCH = 5 # A and B contain different number of elements
INCOMPATIBLE = 6 # A and B are incompatible
SAME_TYPE_INCOMPATIBLE_PARAMS = 7 # A and B are of the same type but parametrized differently


Special cases
~~~~~~~~~~~~~

* **Void** element types. Sometimes, it is necessary to have a functionality similar to "void*" in C/C++. That, is if we still want to enforce order and axes' semantics but should be able to accept elements of any type. This can be achieved by using an instance of :class:`VoidType<nemo.core.neural_types.VoidType>` as ``elements_type`` argument.
* **Big void** this type will effectively disable any type checks. This is how to create such type: ``NeuralType()``. The result of its comparison to any other type will always be SAME.
* **AxisKind.Any** this axis kind is used to represent any axis. This is useful, for example, in losses where a specific loss module can be used in difference applications and therefore with different axis kinds

Inheritance
~~~~~~~~~~~

Type inheritance is a very powerful tool in programming. NeMo's neural types support inheritance. Consider the
following example below.

**Example.** We want to represent the following. A module's A output (out1) produces mel-spectrogram
signal, while module's B output produces mffc-spectrogram. We also want to a thrid module C which can perform data
augmentation with any kind of spectrogram. With NeMo neural types representing this semantics is easy:

.. code-block:: python

input = NeuralType(('B', 'D', 'T'), SpectrogramType())
out1 = NeuralType(('B', 'D', 'T'), MelSpectrogramType())
out2 = NeuralType(('B', 'D', 'T'), MFCCSpectrogramType())

# then the following comparison results will be generated
input.compare(out1) == SAME
input.compare(out2) == SAME
out1.compare(input) == INCOMPATIBLE
out2.compare(out1) == INCOMPATIBLE

This happens because both ``MelSpectrogramType`` and ``MFCCSpectrogramType`` inherit from ``SpectrogramType`` class.
Notice, that mfcc and mel spectrograms aren't interchangable, which is why ``out1.compare(input) == INCOMPATIBLE``

**Special cases**
Advanced usage
~~~~~~~~~~~~~~

* *Non-tensor* objects should be denoted as ``NeuralType(None)``
* *Optional*: input is as optional, if input is provided the type compatibility will be checked
* *Root* type is denoted by ``NeuralType({})``: A port of ``NeuralType({})`` type must accept NmTensors of any NeuralType:
**Extending with user-defined types.** If you need to add your own element types, create a new class inheriting from
:class:`ElementType<nemo.core.neural_types.ElementType>`. Instead of using built-in axes kinds from
:class:`AxisKind<nemo.core.neural_types.AxisKind>`, you can define your own
by creating a new Python enum which should inherit from :class:`AxisKindAbstract<nemo.core.neural_types.AxisKindAbstract>`.

**Lists**. Sometimes module's input or output should be a list (possibly nested) of Tensors. NeMo's
:class:`AxisType<nemo.core.neural_types.AxisType>` class accepts ``is_list`` argument which could be set to True.
Consider the example below:

.. code-block:: python

root_type = NeuralType({})
root_type.compare(any_other_neural_type) == NeuralTypeComparisonResult.SAME
T1 = NeuralType(
axes=(
AxisType(kind=AxisKind.Batch, size=None, is_list=True),
AxisType(kind=AxisKind.Time, size=None, is_list=True),
AxisType(kind=AxisKind.Dimension, size=32, is_list=False),
AxisType(kind=AxisKind.Dimension, size=128, is_list=False),
AxisType(kind=AxisKind.Dimension, size=256, is_list=False),
),
elements_type=ChannelType(),
)

In this example, first two axes are lists. That is the object are list of lists of rank 3 tensors with dimensions
(32x128x256). Note that all list axes must come before any tensor axis.

.. tip::
We strongly recommend this to be avoided, if possible, and tensors used instead (perhaps) with padding.

See "nemo/tests/test_neural_types.py" for more examples.

**Named tuples (structures).** To represent struct-like objects, for example, bounding boxes in computer vision, use
the following syntax:

.. code-block:: python

class BoundingBox(ElementType):
def __str__(self):
return "bounding box from detection model"
def fields(self):
return ("X", "Y", "W", "H")
# ALSO ADD new, user-defined, axis kind
class AxisKind2(AxisKindAbstract):
Image = 0
T1 = NeuralType(elements_type=BoundingBox(),
axes=(AxisType(kind=AxisKind.Batch, size=None, is_list=True),
AxisType(kind=AxisKind2.Image, size=None, is_list=True)))

In the example above, we create a special "element type" class for BoundingBox which stores exactly 4 values.
We also, add our own axis kind (Image). So the final Neural Type (T1) represents lists (for batch) of lists (for
image) of bounding boxes. Under the hood it should be list(lists(4x1 tensors)).


**Neural Types help us to debug models**
Expand All @@ -76,6 +179,5 @@ For example, module should concatenate (add) two input tensors X and Y along dim

A module expects image of size 224x224 but gets 256x256. The type comparison will result in ``NeuralTypeComparisonResult.DIM_INCOMPATIBLE`` .

.. note::
This type mechanism is represented by Python inheritance. That is, :class:`NmTensor<nemo.core.neural_types.NmTensor>` class inherits from :class:`NeuralType<nemo.core.neural_types.NeuralType>` class.


11 changes: 7 additions & 4 deletions nemo/backends/pytorch/common/losses.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@

from nemo.backends.pytorch.nm import LossNM
from nemo.core.neural_types import LabelsType, LogitsType, LossType, NeuralType, RegressionValuesType
from nemo.utils.decorators import add_port_docs

__all__ = ['SequenceLoss', 'CrossEntropyLoss', 'MSELoss']

Expand Down Expand Up @@ -32,18 +33,16 @@ class SequenceLoss(LossNM):
"""

@property
@add_port_docs()
okuchaiev marked this conversation as resolved.
Show resolved Hide resolved
def input_ports(self):
"""Returns definitions of module input ports.
"""
return {'log_probs': NeuralType(axes=('B', 'T', 'D')), 'targets': NeuralType(axes=('B', 'T'))}

@property
@add_port_docs()
def output_ports(self):
"""Returns definitions of module output ports.

loss:
NeuralType(None)

"""
return {"loss": NeuralType(elements_type=LossType())}

Expand Down Expand Up @@ -103,6 +102,7 @@ class CrossEntropyLoss(LossNM):
"""

@property
@add_port_docs()
def input_ports(self):
"""Returns definitions of module input ports.
"""
Expand All @@ -112,6 +112,7 @@ def input_ports(self):
}

@property
@add_port_docs()
def output_ports(self):
"""Returns definitions of module output ports.

Expand All @@ -133,6 +134,7 @@ def _loss_function(self, logits, labels):

class MSELoss(LossNM):
@property
@add_port_docs()
def input_ports(self):
"""Returns definitions of module input ports.

Expand All @@ -148,6 +150,7 @@ def input_ports(self):
}

@property
@add_port_docs()
def output_ports(self):
"""Returns definitions of module output ports.

Expand Down
5 changes: 5 additions & 0 deletions nemo/backends/pytorch/common/rnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
from nemo.backends.pytorch.common.parts import Attention
from nemo.backends.pytorch.nm import TrainableNM
from nemo.core import *
from nemo.utils.decorators import add_port_docs
from nemo.utils.misc import pad_to

__all__ = ['DecoderRNN', 'EncoderRNN']
Expand Down Expand Up @@ -65,6 +66,7 @@ class DecoderRNN(TrainableNM):
"""

@property
@add_port_docs()
def input_ports(self):
"""Returns definitions of module input ports.
"""
Expand All @@ -78,6 +80,7 @@ def input_ports(self):
}

@property
@add_port_docs()
def output_ports(self):
"""Returns definitions of module output ports.
"""
Expand Down Expand Up @@ -203,6 +206,7 @@ class EncoderRNN(TrainableNM):
""" Simple RNN-based encoder using GRU cells """

@property
@add_port_docs()
def input_ports(self):
"""Returns definitions of module input ports.
"""
Expand All @@ -214,6 +218,7 @@ def input_ports(self):
}

@property
@add_port_docs()
def output_ports(self):
"""Returns definitions of module output ports.
"""
Expand Down
3 changes: 3 additions & 0 deletions nemo/backends/pytorch/common/search.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

from nemo.backends.pytorch.nm import NonTrainableNM
from nemo.core.neural_types import ChannelType, NeuralType
from nemo.utils.decorators import add_port_docs

INF = float('inf')
BIG_NUM = 1e4
Expand All @@ -29,6 +30,7 @@ class GreedySearch(NonTrainableNM):
"""

@property
@add_port_docs()
def input_ports(self):
"""Returns definitions of module input ports.
"""
Expand All @@ -40,6 +42,7 @@ def input_ports(self):
}

@property
@add_port_docs()
def output_ports(self):
"""Returns definitions of module output ports.

Expand Down
1 change: 1 addition & 0 deletions nemo/backends/pytorch/nm.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,6 +268,7 @@ def num_weights(self):

@abstractmethod
def __len__(self):
"""Dataset size"""
okuchaiev marked this conversation as resolved.
Show resolved Hide resolved
"""Dataset size"""
pass

Expand Down
35 changes: 13 additions & 22 deletions nemo/backends/pytorch/torchvision/data/image_folder.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,39 +3,30 @@

from .....core import *
from ...nm import DataLayerNM
from nemo.utils.decorators import add_port_docs


class ImageFolderDataLayer(DataLayerNM):
"""This class wraps Torchvision's ImageFolder data set API into
NeuralModule."""

@property
@add_port_docs()
def output_ports(self):
"""Returns definitions of module output ports.

image:
0: AxisType(BatchTag)

1: AxisType(ChannelTag)

2: AxisType(HeightTag, input_size)

3: AxisType(WidthTag, input_size)


label:
0: AxisType(BatchTag)
"""
return {
"image": NeuralType(
{
0: AxisType(BatchTag),
1: AxisType(ChannelTag),
2: AxisType(HeightTag, self._input_size),
3: AxisType(WidthTag, self._input_size),
}
),
"label": NeuralType({0: AxisType(BatchTag)}),
# "image": NeuralType(
# {
# 0: AxisType(BatchTag),
# 1: AxisType(ChannelTag),
# 2: AxisType(HeightTag, self._input_size),
# 3: AxisType(WidthTag, self._input_size),
# }
# ),
# "label": NeuralType({0: AxisType(BatchTag)}),
"image": NeuralType(elements_type=ChannelType(), axes=('B', 'C', 'H', 'W')),
"label": NeuralType(elements_type=LogitsType(), axes=tuple('B')),
}

def __init__(self, batch_size, path, input_size=32, shuffle=True, is_eval=False):
Expand Down
Loading