-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com>
- Loading branch information
Showing
1 changed file
with
225 additions
and
0 deletions.
There are no files selected for viewing
225 changes: 225 additions & 0 deletions
225
scripts/nlp_language_modeling/convert_nemo_mistral_7b_to_hf.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r""" | ||
Conversion script to convert NeMo Mistral-7B checkpoints into HuggingFace checkpoint. | ||
Example to run this conversion script: | ||
python3 convert_nemo_mistral_7b_to_hf.py \ | ||
--in-file <path_to_nemo_checkpoints_folder> \ | ||
--out-file <path_to_output_hf_file> | ||
""" | ||
|
||
from argparse import ArgumentParser | ||
from collections import OrderedDict | ||
|
||
import torch | ||
import torch.nn | ||
from pytorch_lightning.trainer.trainer import Trainer | ||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | ||
|
||
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel | ||
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy | ||
from nemo.utils import logging | ||
|
||
|
||
def get_args(): | ||
parser = ArgumentParser() | ||
parser.add_argument("--in-file", type=str, default=None, required=True, help="Path to NeMo Mistral-7B checkpoint") | ||
parser.add_argument("--out-file", type=str, default=None, required=True, help="Path to output HF checkpoint.") | ||
parser.add_argument('--hf-model-name', type=str, default="mistralai/Mistral-7B-v0.1", help="Name of HF checkpoint") | ||
parser.add_argument("--precision", type=str, default="32", help="Model precision") | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def load_config(hf_model_name, nemo_config): | ||
hf_config = AutoConfig.from_pretrained(hf_model_name) | ||
# SWA; nemo_config.window_size is list [left-bound, right-bound] | ||
hf_config.sliding_window = nemo_config.window_size[0] | ||
hf_config.max_position_embeddings = nemo_config.encoder_seq_length | ||
hf_config.num_hidden_layers = nemo_config.num_layers | ||
hf_config.hidden_size = nemo_config.hidden_size | ||
hf_config.intermediate_size = nemo_config.ffn_hidden_size | ||
hf_config.num_attention_heads = nemo_config.num_attention_heads | ||
hf_config.max_position_embeddings = nemo_config.max_position_embeddings | ||
hf_config.initializer_range = nemo_config.init_method_std | ||
hf_config.rms_norm_eps = nemo_config.layernorm_epsilon | ||
hf_config.num_key_value_heads = nemo_config.num_query_groups | ||
if nemo_config.activation == 'fast-swiglu': | ||
hf_config.activation = 'silu' | ||
else: | ||
logging.warning(f"Got unknown activation function {nemo_config.activation}") | ||
|
||
hf_config.rope_theta = nemo_config['rotary_base'] | ||
return hf_config | ||
|
||
|
||
def convert(in_file, precision=None, cpu_only=True) -> None: | ||
""" | ||
Convert NeMo checkpoint to HF checkpoint | ||
""" | ||
|
||
logging.info(f'Loading NeMo checkpoint from: {in_file}') | ||
|
||
dummy_trainer = Trainer(devices=1, accelerator='cpu', strategy=NLPDDPStrategy()) | ||
model_config = MegatronGPTModel.restore_from(in_file, trainer=dummy_trainer, return_config=True) | ||
model_config.tensor_model_parallel_size = 1 | ||
model_config.pipeline_model_parallel_size = 1 | ||
if cpu_only: | ||
map_location = torch.device('cpu') | ||
model_config.use_cpu_initialization = True | ||
else: | ||
map_location = None | ||
|
||
if cpu_only: | ||
logging.info("******** Loading model on CPU. This will take a significant amount of time.") | ||
model = MegatronGPTModel.restore_from( | ||
in_file, trainer=dummy_trainer, override_config_path=model_config, map_location=map_location | ||
) | ||
ckpt = model.state_dict() | ||
nemo_config = model.cfg | ||
|
||
mcore_gpt = nemo_config.mcore_gpt | ||
|
||
if precision is None: | ||
precision = model.cfg.precision | ||
if precision in [32, "32"]: | ||
dtype = torch.float32 | ||
elif precision in [16, "16", "16-mixed"]: | ||
dtype = torch.float16 | ||
elif precision in ["bf16", "bf16-mixed"]: | ||
dtype = torch.bfloat16 | ||
else: | ||
logging.warning(f"Precision string {precision} is not recognized, falling back to fp32") | ||
dtype = torch.float32 # fallback | ||
param_to_weights = lambda param: param.to(dtype) | ||
|
||
state_dict = OrderedDict() | ||
|
||
hf_embed_weight_name = f'model.embed_tokens.weight' | ||
if mcore_gpt: | ||
embed_weights_base_name = f'model.embedding.word_embeddings.weight' | ||
else: | ||
embed_weights_base_name = f'model.language_model.embedding.word_embeddings.weight' | ||
state_dict[hf_embed_weight_name] = param_to_weights(ckpt[embed_weights_base_name]) | ||
|
||
if nemo_config.num_query_groups is None or nemo_config.num_query_groups == head_num: | ||
num_query_groups = head_num | ||
else: | ||
num_query_groups = nemo_config.num_query_groups | ||
assert head_num % num_query_groups == 0, 'head_num must be divisible by num_query_groups' | ||
if mcore_gpt: | ||
assert nemo_config.activation.startswith('fast-'), 'mcore only supports fast version of gated linear unit.' | ||
|
||
hidden_size = model.cfg.hidden_size | ||
head_num = model.cfg.num_attention_heads | ||
num_layers = model.cfg.num_layers | ||
num_query_groups = model.cfg.get("num_query_groups", head_num) # different num_query_groups for 70B | ||
|
||
head_size = hidden_size // head_num | ||
heads_per_group = head_num // num_query_groups | ||
qkv_total_dim = head_num + 2 * num_query_groups | ||
|
||
# Embedding | ||
embed_weight = model.state_dict()[f'model.embedding.word_embeddings.weight'] | ||
embed_weights_base_name = f'model.embed_tokens.weight' | ||
state_dict[embed_weights_base_name] = param_to_weights(embed_weight) | ||
|
||
for l in range(int(num_layers)): | ||
print(f"converting layer {l}") | ||
|
||
qkv_weights = model.state_dict()[f'model.decoder.layers.{l}.self_attention.linear_qkv.weight'] | ||
qkv_weights = qkv_weights.reshape([qkv_total_dim, head_size, hidden_size]) | ||
|
||
q_slice = torch.cat( | ||
[ | ||
torch.arange((heads_per_group + 2) * i, (heads_per_group + 2) * i + heads_per_group) | ||
for i in range(num_query_groups) | ||
] | ||
) | ||
k_slice = torch.arange(heads_per_group, qkv_total_dim, (heads_per_group + 2)) | ||
v_slice = torch.arange(heads_per_group + 1, qkv_total_dim, (heads_per_group + 2)) | ||
|
||
for name, slice in [('q_proj', q_slice), ('k_proj', k_slice), ('v_proj', v_slice)]: | ||
weight_name = f'model.layers.{l}.self_attn.{name}.weight' | ||
state_dict[weight_name] = param_to_weights(qkv_weights[slice].reshape(-1, hidden_size)) | ||
|
||
# attention dense | ||
hf_o_weight_name = f'model.layers.{l}.self_attn.o_proj.weight' | ||
if mcore_gpt: | ||
o_weight_base_name = f'model.decoder.layers.{l}.self_attention.linear_proj.weight' | ||
else: | ||
o_weight_base_name = f'model.language_model.encoder.layers.{l}.self_attention.dense.weight' | ||
state_dict[hf_o_weight_name] = param_to_weights(ckpt[o_weight_base_name]) | ||
|
||
# # MLP | ||
if mcore_gpt: | ||
mlp_down_base_name = f'model.decoder.layers.{l}.mlp.linear_fc1.weight' | ||
else: | ||
raise Exception("not implemented") | ||
gate_proj_weight, up_proj_weight = torch.chunk(ckpt[mlp_down_base_name], 2, dim=0) | ||
hf_gate_proj_name = f'model.layers.{l}.mlp.gate_proj.weight' | ||
hf_up_proj_name = f'model.layers.{l}.mlp.up_proj.weight' | ||
state_dict[hf_gate_proj_name] = param_to_weights(gate_proj_weight) | ||
state_dict[hf_up_proj_name] = param_to_weights(up_proj_weight) | ||
|
||
hf_mlp_up_weight_name = f'model.layers.{l}.mlp.down_proj.weight' | ||
if mcore_gpt: | ||
mlp_up_base_name = f'model.decoder.layers.{l}.mlp.linear_fc2.weight' | ||
else: | ||
raise Exception("not implemented") | ||
state_dict[hf_mlp_up_weight_name] = param_to_weights(ckpt[mlp_up_base_name]) | ||
|
||
# LayerNorm | ||
hf_input_ln_weight_name = f'model.layers.{l}.input_layernorm.weight' | ||
if mcore_gpt: | ||
input_ln_base_name = f'model.decoder.layers.{l}.self_attention.linear_qkv.layer_norm_weight' | ||
else: | ||
input_ln_base_name = f'model.language_model.encoder.layers.{l}.input_layernorm.weight' | ||
Check warning Code scanning / CodeQL Unreachable code Warning
This statement is unreachable.
|
||
state_dict[hf_input_ln_weight_name] = param_to_weights(ckpt[input_ln_base_name]) | ||
|
||
hf_post_attn_ln_weight_name = f'model.layers.{l}.post_attention_layernorm.weight' | ||
if mcore_gpt: | ||
post_attn_ln_base_name = f'model.decoder.layers.{l}.self_attention.linear_qkv.layer_norm_weight' | ||
else: | ||
post_attn_ln_base_name = f'model.language_model.encoder.layers.{l}.post_attention_layernorm.weight' | ||
Check warning Code scanning / CodeQL Unreachable code Warning
This statement is unreachable.
|
||
state_dict[hf_post_attn_ln_weight_name] = param_to_weights(ckpt[post_attn_ln_base_name]) | ||
|
||
hf_final_ln_weight_name = 'model.norm.weight' | ||
if mcore_gpt: | ||
final_ln_base_name = 'model.decoder.final_layernorm.weight' | ||
else: | ||
final_ln_base_name = 'model.language_model.encoder.final_layernorm.weight' | ||
state_dict[hf_final_ln_weight_name] = param_to_weights(ckpt[final_ln_base_name]) | ||
|
||
hf_output_layer_weight_name = 'lm_head.weight' | ||
if mcore_gpt: | ||
output_layer_base_name = 'model.output_layer.weight' | ||
else: | ||
output_layer_base_name = 'model.language_model.output_layer.weight' | ||
state_dict[hf_output_layer_weight_name] = param_to_weights(ckpt[output_layer_base_name]) | ||
return state_dict, nemo_config | ||
|
||
|
||
if __name__ == '__main__': | ||
args = get_args() | ||
hf_state_dict, nemo_config = convert(args.in_file, args.precision) | ||
|
||
config = load_config(args.hf_model_name, nemo_config) | ||
model = AutoModelForCausalLM.from_config(config) | ||
model.load_state_dict(hf_state_dict) | ||
model.save_pretrained(args.out_file) | ||
hf_tokenizer = AutoTokenizer.from_pretrained(args.hf_model_name) | ||
hf_tokenizer.save_pretrained(args.out_file) | ||
logging.info(f'HF checkpoint saved to: {args.out_file}') |