Skip to content

Commit

Permalink
Finetune T5 on the prefix-lm objective (#4328)
Browse files Browse the repository at this point in the history
* Add script and yaml config

Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca>

* Fix yaml config

Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca>

* Style

Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca>

* Update yaml to remove hardcoded model path

Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca>

Co-authored-by: Oleksii Kuchaiev <okuchaiev@users.noreply.github.com>
  • Loading branch information
MaximumEntropy and okuchaiev authored Jun 3, 2022
1 parent 968ee12 commit 416d033
Show file tree
Hide file tree
Showing 2 changed files with 242 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
name: megatron_t5_lm_adaptation_finetune
restore_from_path: null # used when starting from a .nemo file

trainer:
devices: 1
num_nodes: 1
accelerator: gpu
precision: 16
logger: False # logger provided by exp_manager
enable_checkpointing: False
replace_sampler_ddp: False
max_epochs: 1000 # PTL default. In practice, max_steps will be reached first.
max_steps: 100000 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
log_every_n_steps: 10
val_check_interval: 100
limit_val_batches: 50
limit_test_batches: 500
accumulate_grad_batches: 1
gradient_clip_val: 1.0

exp_manager:
explicit_log_dir: null
exp_dir: null
name: megatron_t5_lm_adaptation_finetune
create_wandb_logger: False
wandb_logger_kwargs:
project: null
name: null
resume_if_exists: True
resume_ignore_no_checkpoint: True
create_checkpoint_callback: True
checkpoint_callback_params:
monitor: val_loss
save_top_k: 10
mode: min
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel
filename: 'megatron_t5--{val_loss:.2f}-{step}-{consumed_samples}'
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}}

model:
# pretrained model path
pretrained_model_path: ???

# model parallelism
micro_batch_size: 4
global_batch_size: 8 # will use more micro batches to reach global batch size
tensor_model_parallel_size: 2
pipeline_model_parallel_size: 1
resume_from_checkpoint: null # manually set the checkpoint file to load from
pipeline_model_parallel_split_rank: 1

# O2 mixed precision
megatron_amp_O2: False # use AMP with O2 style mixed precision instead of native amp on-the-fly weight autocasting.

# JIT fusion params.
bias_gelu_fusion: True # Use a kernel that fuses the bias addition from weight matrices with the subsequent gelu activation.
masked_softmax_fusion: True # Use a kernel that fuses the attention softmax with it's mask.
bias_dropout_add_fusion: True # Use a kernel that fuses the bias addition, dropout and residual connection addition.

gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)

# Dropout
hidden_dropout: null
attention_dropout: null

data:
# Path to data must be specified by the user.
# can override from the CLI: "model.data.data_prefix=[.5,/raid/data/pile/my-t5_00_text_document,.5,/raid/data/pile/my-t5_01_text_document]",
# Or see example below:
# data_prefix:
# - .5
# - /raid/data/pile/my-t5_00_text_document
# - .5
# - /raid/data/pile/my-t5_01_text_document
data_prefix: ???
index_mapping_dir: null
data_impl: mmap
splits_string: 949,45,5
seq_length: ${model.seq_length}
seq_length_dec: 128
skip_warmup: True
num_workers: 0
dataloader_type: single # cyclic
masked_lm_prob: 0.15
dataset_type: 't5_prefix_lm'
short_seq_prob: 0.0
max_ngram_size: 10
mean_ngram_size: null
geometric_dist: True
permutation: False
whole_word_masking: True
favor_longer_ngrams: False

optim:
name: fused_adam
lr: 5e-6
betas:
- 0.9
- 0.999
eps: 1e-8
weight_decay: 0.01
141 changes: 141 additions & 0 deletions examples/nlp/language_modeling/megatron_t5_lm_adaptation_finetune.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelSummary
from pytorch_lightning.callbacks.timer import Timer
from pytorch_lightning.plugins.environments.torchelastic_environment import TorchElasticEnvironment
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector

from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model
from nemo.collections.nlp.parts.nlp_overrides import (
GradScaler,
MegatronHalfPrecisionPlugin,
NLPDDPPlugin,
NLPSaveRestoreConnector,
PipelineMixedPrecisionPlugin,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import StatelessTimer, exp_manager


@hydra_runner(config_path="conf", config_name="megatron_t5_lm_adaptation_finetune")
def main(cfg) -> None:
logging.info("\n\n************** Experiment configuration ***********")
logging.info(f'\n{OmegaConf.to_yaml(cfg)}')

megatron_amp_o2 = cfg.model.get('megatron_amp_O2', False)
plugins = [
NLPDDPPlugin(
no_ddp_communication_hook=True, # we don't use DDP for async grad allreduce
gradient_as_bucket_view=cfg.model.gradient_as_bucket_view,
find_unused_parameters=False,
)
]
if cfg.trainer.precision in [16, 'bf16']:
scaler = None
if cfg.trainer.precision == 16:
scaler = GradScaler(
init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32),
growth_interval=cfg.model.get('native_amp_growth_interval', 1000),
hysteresis=cfg.model.get('hysteresis', 2),
)
if megatron_amp_o2:
plugins.append(MegatronHalfPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler))
else:
plugins.append(PipelineMixedPrecisionPlugin(precision=cfg.trainer.precision, device='cuda', scaler=scaler))

if cfg.get('cluster_type', None) == 'BCP':
plugins.append(TorchElasticEnvironment())

trainer = Trainer(plugins=plugins, **cfg.trainer, callbacks=[ModelSummary(max_depth=3)])
exp_manager(trainer, cfg.exp_manager)

# update resume from checkpoint found by exp_manager
if cfg.model.resume_from_checkpoint is not None:
resume_from_checkpoint = cfg.model.resume_from_checkpoint
else:
resume_from_checkpoint = trainer._checkpoint_connector.resume_from_checkpoint_fit_path
logging.info(f'Resuming training from checkpoint: {resume_from_checkpoint}')

trainer._checkpoint_connector = CheckpointConnector(trainer, resume_from_checkpoint=resume_from_checkpoint)
# Override timer callback to a stateless one
for idx, callback in enumerate(trainer.callbacks):
if isinstance(callback, Timer):
trainer.callbacks[idx] = StatelessTimer(cfg.trainer.max_time,)

# hydra interpolation does not work here as the interpolation key is lost when PTL saves hparams
with open_dict(cfg):
cfg.model.precision = cfg.trainer.precision

if hasattr(cfg.model, 'pretrained_model_path') and cfg.model.pretrained_model_path is not None:
pretrained_cfg = MegatronT5Model.restore_from(
cfg.model.pretrained_model_path, trainer=trainer, return_config=True
)
OmegaConf.set_struct(pretrained_cfg, True)
with open_dict(pretrained_cfg):

# Override data from T5 to Prefix-LM
encoder_seq_length = pretrained_cfg.data.seq_length
decoder_seq_length = (
pretrained_cfg.data.seq_length
) # Set decoder seq length to be enoder seq length for prefix-lm
pretrained_cfg.data = cfg.model.data
pretrained_cfg.data.seq_length = encoder_seq_length
pretrained_cfg.data.seq_length_dec = (
decoder_seq_length - 1
) # -1 is to account for the addition of <bos> and <eos> and right shifting to create targets.

# Override fusion params.
pretrained_cfg.masked_softmax_fusion = cfg.model.masked_softmax_fusion
pretrained_cfg.bias_dropout_add_fusion = cfg.model.bias_dropout_add_fusion
pretrained_cfg.bias_gelu_fusion = cfg.model.bias_gelu_fusion

# Override dropout
if cfg.model.hidden_dropout is not None:
pretrained_cfg.hidden_dropout = cfg.model.hidden_dropout

if cfg.model.attention_dropout is not None:
pretrained_cfg.attention_dropout = cfg.model.attention_dropout

# Override precision
pretrained_cfg.precision = trainer.precision # Set above from trainer.precision

# Override micro/global batch
pretrained_cfg.micro_batch_size = cfg.model.micro_batch_size
pretrained_cfg.global_batch_size = cfg.model.global_batch_size

# O2 AMP
pretrained_cfg.megatron_amp_O2 = cfg.model.get('megatron_amp_O2', False)

# Optimizer overrides.
pretrained_cfg.optim = cfg.model.optim

model = MegatronT5Model.restore_from(
cfg.model.pretrained_model_path,
trainer=trainer,
override_config_path=pretrained_cfg,
save_restore_connector=NLPSaveRestoreConnector(),
)
else:
raise ValueError(f'No pretrained model path specified or does not exist {cfg.model.pretrained_model_path}')

trainer.fit(model)


if __name__ == '__main__':
main()

0 comments on commit 416d033

Please sign in to comment.