-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Stateless timer fix for PTL 1.6 (#3925)
* Stateless timer fix for PTL 1.6 Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * Stateless timer PTL test Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * Fix year Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * Style Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * Remove unused imports Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * Style Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * GPU test Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * Style Signed-off-by: MaximumEntropy <sandeep.subramanian.1@umontreal.ca> * clean import Signed-off-by: ericharper <complex451@gmail.com> Co-authored-by: ericharper <complex451@gmail.com>
- Loading branch information
1 parent
9da27f1
commit 29cce8e
Showing
2 changed files
with
134 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import shutil | ||
|
||
import pytest | ||
import torch | ||
from omegaconf import OmegaConf | ||
from pytorch_lightning import Trainer | ||
from pytorch_lightning.utilities.distributed import rank_zero_only | ||
|
||
from nemo.core import ModelPT | ||
from nemo.utils import logging | ||
from nemo.utils.exp_manager import CallbackParams, ExpManagerConfig, StatelessTimer, exp_manager | ||
|
||
|
||
class OnesDataset(torch.utils.data.Dataset): | ||
def __init__(self, dataset_len): | ||
super().__init__() | ||
self.__dataset_len = dataset_len | ||
|
||
def __getitem__(self, *args): | ||
return torch.ones(2) | ||
|
||
def __len__(self): | ||
return self.__dataset_len | ||
|
||
|
||
class ExampleModel(ModelPT): | ||
def __init__(self, *args, **kwargs): | ||
cfg = OmegaConf.structured({}) | ||
super().__init__(cfg, trainer=kwargs.get('trainer', None)) | ||
# dummy parameter in order to allow DDP to execute | ||
self.l1 = torch.nn.modules.Linear(in_features=2, out_features=1) | ||
|
||
def train_dataloader(self): | ||
dataset = OnesDataset(10000) | ||
return torch.utils.data.DataLoader(dataset, batch_size=2) | ||
|
||
def val_dataloader(self): | ||
dataset = OnesDataset(10) | ||
return torch.utils.data.DataLoader(dataset, batch_size=2) | ||
|
||
def predict_dataloader(self): | ||
dataset = OnesDataset(10) | ||
return torch.utils.data.DataLoader(dataset, batch_size=2) | ||
|
||
def forward(self, batch): | ||
return (self.l1(batch) - batch.mean(dim=1)).mean() | ||
|
||
def validation_step(self, batch, batch_idx): | ||
return (self.l1(batch) - batch.mean(dim=1)).mean() | ||
|
||
def training_step(self, batch, batch_idx): | ||
return (self.l1(batch) - batch.mean(dim=1)).mean() | ||
|
||
def list_available_models(self): | ||
pass | ||
|
||
def setup_training_data(self): | ||
pass | ||
|
||
def setup_validation_data(self): | ||
pass | ||
|
||
def validation_epoch_end(self, loss): | ||
self.log("val_loss", torch.stack(loss).mean()) | ||
|
||
|
||
class TestStatelessTimer: | ||
def setup_model(self): | ||
# Stateless timer for 3 seconds. | ||
# Max steps shouldn't matter for it should stop in 3 seconds based on the timer. | ||
# Val check interval makes sure a checkpoint is written and can be restored from. | ||
callback_params = CallbackParams() | ||
callback_params.monitor = "val_loss" | ||
callback_params.save_top_k = 1 | ||
trainer = Trainer( | ||
devices=1, | ||
val_check_interval=5, | ||
max_steps=10000, | ||
accelerator='gpu', | ||
strategy='ddp', | ||
logger=None, | ||
callbacks=[StatelessTimer('00:00:00:03')], | ||
checkpoint_callback=False, | ||
) | ||
exp_manager_cfg = ExpManagerConfig( | ||
explicit_log_dir='./ptl_stateless_timer_check/', | ||
use_datetime_version=False, | ||
version="", | ||
resume_ignore_no_checkpoint=True, | ||
create_checkpoint_callback=True, | ||
checkpoint_callback_params=callback_params, | ||
resume_if_exists=True, | ||
) | ||
exp_manager(trainer, cfg=OmegaConf.structured(exp_manager_cfg)) | ||
model = ExampleModel(trainer=trainer) | ||
trainer.fit(model) | ||
return trainer | ||
|
||
def cleanup(self): | ||
if os.path.exists('./ptl_stateless_timer_check'): | ||
shutil.rmtree('./ptl_stateless_timer_check', ignore_errors=True) | ||
|
||
@pytest.mark.run_only_on('GPU') | ||
@pytest.mark.unit | ||
def test_stateless_timer(self): | ||
self.cleanup() | ||
trainer = self.setup_model() | ||
global_step_1 = trainer.global_step | ||
trainer = self.setup_model() | ||
global_step_2 = trainer.global_step | ||
trainer = self.setup_model() | ||
global_step_3 = trainer.global_step | ||
logging.info(f"Global steps : {global_step_1}, {global_step_2}, {global_step_3}") | ||
assert global_step_3 > global_step_2 > global_step_1 | ||
self.cleanup() |