Skip to content

Commit

Permalink
Refactor exponential histogram tests to use existing fixtures (open-t…
Browse files Browse the repository at this point in the history
…elemetry#4747)

* Refactor expo hist test to use existing fixtures

The tests for the exponential histogram create their own testing
fixtures. There is nothing these new fixtures do that cannot already be
done with the existing testing fixtures used by all the other aggregate
functions. Unify the exponential histogram testing to use the existing
fixtures.

* Add alt input for cumulative test
  • Loading branch information
MrAlias authored Dec 9, 2023
1 parent b5afa70 commit 215eae3
Showing 1 changed file with 146 additions and 128 deletions.
274 changes: 146 additions & 128 deletions sdk/metric/internal/aggregate/exponential_histogram_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -23,10 +23,8 @@ import (
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"

"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/internal/global"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
"go.opentelemetry.io/otel/sdk/metric/metricdata/metricdatatest"
)

type noErrorHandler struct{ t *testing.T }
Expand Down Expand Up @@ -739,161 +737,181 @@ func TestSubNormal(t *testing.T) {
}

func TestExponentialHistogramAggregation(t *testing.T) {
t.Run("Int64", testExponentialHistogramAggregation[int64])
t.Run("Float64", testExponentialHistogramAggregation[float64])
}
t.Cleanup(mockTime(now))

func testExponentialHistogramAggregation[N int64 | float64](t *testing.T) {
const (
maxSize = 4
maxScale = 20
noMinMax = false
noSum = false
)
t.Run("Int64/Delta", testDeltaExpoHist[int64]())
t.Run("Float64/Delta", testDeltaExpoHist[float64]())
t.Run("Int64/Cumulative", testCumulativeExpoHist[int64]())
t.Run("Float64/Cumulative", testCumulativeExpoHist[float64]())
}

tests := []struct {
name string
build func() (Measure[N], ComputeAggregation)
input [][]N
want metricdata.ExponentialHistogram[N]
wantCount int
}{
func testDeltaExpoHist[N int64 | float64]() func(t *testing.T) {
in, out := Builder[N]{
Temporality: metricdata.DeltaTemporality,
Filter: attrFltr,
}.ExponentialBucketHistogram(4, 20, false, false)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{},
},
},
},
{
name: "Delta Single",
build: func() (Measure[N], ComputeAggregation) {
return Builder[N]{
input: []arg[N]{
{ctx, 4, alice},
{ctx, 4, alice},
{ctx, 4, alice},
{ctx, 2, alice},
{ctx, 16, alice},
{ctx, 1, alice},
},
expect: output{
n: 1,
agg: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.DeltaTemporality,
}.ExponentialBucketHistogram(maxSize, maxScale, noMinMax, noSum)
},
input: [][]N{
{4, 4, 4, 2, 16, 1},
},
want: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Count: 6,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 31,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 4, 1},
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Count: 6,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 31,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 4, 1},
},
},
},
},
},
wantCount: 1,
},
{
name: "Cumulative Single",
build: func() (Measure[N], ComputeAggregation) {
return Builder[N]{
// Delta sums are expected to reset.
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{},
},
},
},
})
}

func testCumulativeExpoHist[N int64 | float64]() func(t *testing.T) {
in, out := Builder[N]{
Temporality: metricdata.CumulativeTemporality,
Filter: attrFltr,
}.ExponentialBucketHistogram(4, 20, false, false)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.CumulativeTemporality,
}.ExponentialBucketHistogram(maxSize, maxScale, noMinMax, noSum)
},
input: [][]N{
{4, 4, 4, 2, 16, 1},
},
want: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Count: 6,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 31,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 4, 1},
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 4, alice},
{ctx, 4, alice},
{ctx, 4, alice},
{ctx, 2, alice},
{ctx, 16, alice},
{ctx, 1, alice},
},
expect: output{
n: 1,
agg: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Count: 6,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 31,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 4, 1},
},
},
},
},
},
wantCount: 1,
},
{
name: "Delta Multiple",
build: func() (Measure[N], ComputeAggregation) {
return Builder[N]{
Temporality: metricdata.DeltaTemporality,
}.ExponentialBucketHistogram(maxSize, maxScale, noMinMax, noSum)
},
input: [][]N{
{2, 3, 8},
{4, 4, 4, 2, 16, 1},
},
want: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Count: 6,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 31,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 4, 1},
input: []arg[N]{
{ctx, 2, alice},
{ctx, 3, alice},
{ctx, 8, alice},
},
expect: output{
n: 1,
agg: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Count: 9,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 44,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 6, 2},
},
},
},
},
},
wantCount: 1,
},
{
name: "Cumulative Multiple ",
build: func() (Measure[N], ComputeAggregation) {
return Builder[N]{
input: []arg[N]{},
expect: output{
n: 1,
agg: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.CumulativeTemporality,
}.ExponentialBucketHistogram(maxSize, maxScale, noMinMax, noSum)
},
input: [][]N{
{2, 3, 8},
{4, 4, 4, 2, 16, 1},
},
want: metricdata.ExponentialHistogram[N]{
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Count: 9,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 44,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 6, 2},
DataPoints: []metricdata.ExponentialHistogramDataPoint[N]{
{
Attributes: fltrAlice,
StartTime: staticTime,
Time: staticTime,
Count: 9,
Min: metricdata.NewExtrema[N](1),
Max: metricdata.NewExtrema[N](16),
Sum: 44,
Scale: -1,
PositiveBucket: metricdata.ExponentialBucket{
Offset: -1,
Counts: []uint64{1, 6, 2},
},
},
},
},
},
wantCount: 1,
},
}

for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
restore := withHandler(t)
defer restore()
in, out := tt.build()
ctx := context.Background()

var got metricdata.Aggregation
var count int
for _, n := range tt.input {
for _, v := range n {
in(ctx, v, *attribute.EmptySet())
}
count = out(&got)
}

metricdatatest.AssertAggregationsEqual(t, tt.want, got, metricdatatest.IgnoreTimestamp())
assert.Equal(t, tt.wantCount, count)
})
}
})
}

func FuzzGetBin(f *testing.F) {
Expand Down

0 comments on commit 215eae3

Please sign in to comment.