Skip to content

Developed a computer vision-based grading system for mangoes and apples using image processing and machine learning techniques. Achieved approximately 95% weight estimation accuracy with a sample size of 200.

Notifications You must be signed in to change notification settings

Minh-CaoLeCong/Fruit_Quality_Evaluation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fruits quality evaluation

Abstract

In developing country, the grading of fruits are almost handled by human. That is, neverthelessm, time-consuming process and easily inconsistent. Therefore, researchers in this field has developed various algorithms for evaluating quality using computer vision and machine learning. In this research project, I have also proposed a method using image processing technique to inspect quality of fruits involves image segmentation and feature extraction step.

Acknowledgement

I would like to express my special thanks of gratitude to my tutor (Tran Tien Duc), who is eaching at HCMC University of Technology and Education. He helped me a lot in doing this research and also is one of my loved teacher I've ever met and worked together.

Programming languages

  • C / C++
  • Python
  • MATLAB

Library / Packages

Datasets

Dataset of fruits were obtained from COFILAB team.

Mango Apple golden

Segmentation and contour detection processes

Process Mango Apple golden
Gray
Blur
Inrange
Canny
Dilate
FloodFill
Remove noise
Contour
Area
Dimension
Isolation

Feature extraction

File name Area measured by image analysis (number of pixels) Width measured by image analysis Height measured by image analysis Mass measured by weighting (g) Status
Mango_01_B.JPG 267919 637 556 436.78 Maturity
Mango_02_B.JPG 314896 694 586 511.79 Maturity
Mango_03_B.JPG 294155 646 561 444.76 Maturity
Mango_04_B.JPG 311824 694 567 459.47 Maturity
Mango_05_B.JPG 299544 676 591 457.67 Maturity
Mango_06_B.JPG 296080 699 533 481.72 Maturity
Mango_07_B.JPG 313918 712 576 474.54 Maturity
Mango_08_B.JPG 301669 669 572 473.52 Maturity
Mango_09_B.JPG 315649 697 600 479.97 Maturity
Mango_10_B.JPG 302939 679 599 478.47 Maturity
Mango_11_B.JPG 321777 706 586 477.33 Maturity
Mango_12_B.JPG 285883 655 562 455.42 Maturity
Mango_13_B.JPG 315587 682 595 487.60 Maturity
Mango_14_B.JPG 295082 653 599 472.67 Maturity
Mango_15_B.JPG 293621 662 576 480.83 Maturity
Mango_16_B.JPG 291285 672 543 440.62 Maturity
Mango_17_B.JPG 314757 675 607 524.13 Maturity
Mango_18_B.JPG 300686 684 578 472.50 Maturity
Mango_19_B.JPG 303050 673 589 508.37 Maturity
Mango_20_B.JPG 333246 720 622 516.80 Maturity
Mango_21_B.JPG 323454 701 617 458.57 Maturity
Mango_22_B.JPG 310483 648 597 590.16 Maturity
Mango_23_B.JPG 294239 658 597 545.44 Maturity
Mango_24_B.JPG 289883 680 569 458.00 Maturity
Mango_25_B.JPG 296397 657 591 463.54 Immaturity
Mango_26_B.JPG 277712 665 545 401.21 Immaturity
Mango_27_B.JPG 287156 643 586 437.34 Immaturity
Mango_28_B.JPG 325324 703 613 532.63 Immaturity
Mango_29_B.JPG 285720 659 566 437.36 Immaturity
Mango_30_B.JPG 285922 674 548 417.73 Immaturity
Mango_31_B.JPG 303157 655 612 494.06 Immaturity
Mango_32_B.JPG 314016 678 608 513.60 Immaturity
Mango_33_B.JPG 304348 707 575 477.24 Immaturity
Mango_34_B.JPG 321335 709 607 508.97 Immaturity
Mango_35_B.JPG 301064 704 580 464.89 Immaturity
Mango_36_B.JPG 293339 710 545 427.72 Immaturity
Mango_37_B.JPG 381422 775 634 640.44 Immaturity
Mango_38_B.JPG 309734 709 576 492.18 Immaturity
Mango_39_B.JPG 411628 834 654 739.40 Immaturity
Mango_40_B.JPG 420399 845 661 757.72 Immaturity
Mango_41_B.JPG 375253 773 629 658.54 Immaturity
Mango_42_B.JPG 360528 748 603 620.49 Immaturity
Mango_43_B.JPG 345198 728 645 592.82 Immaturity
Mango_44_B.JPG 335209 718 612 557.35 Immaturity
Mango_45_B.JPG 312361 752 544 484.43 Immaturity
Mango_46_B.JPG 401422 800 649 663.17 Immaturity
Mango_47_B.JPG 352250 734 614 600.40 Immaturity
Mango_48_B.JPG 273928 664 553 505.75 Immaturity
Mango_49_B.JPG 348721 746 615 458.05 Immaturity
Mango_50_B.JPG 310015 677 585 541.46 Immaturity
File name Area measured by image analysis (number of pixels) Width measured by image analysis Height measured by image analysis Mass measured by weighting (g)
Golden_01_3.JPG 325456 713 620 223.61
Golden_02_3.JPG 292818 605 587 212.49
Golden_03_3.JPG 308248 691 573 216.70
Golden_04_3.JPG 330242 639 644 237.87
Golden_05_3.JPG 258536 606 551 170.47
Golden_06_3.JPG 324243 654 610 224.15
Golden_07_3.JPG 281514 616 581 197.17
Golden_08_3.JPG 292763 651 608 206.68
Golden_09_3.JPG 310381 659 624 215.81
Golden_10_3.JPG 262452 590 543 180.21
Golden_11_3.JPG 310246 652 594 228.82
Golden_12_3.JPG 295091 612 617 208.29
Golden_13_3.JPG 294691 687 599 208.82
Golden_14_3.JPG 318046 647 617 212.37
Golden_15_3.JPG 340940 693 633 236.41
Golden_16_3.JPG 317143 663 584 219.46
Golden_17_3.JPG 275108 590 587 189.83
Golden_18_3.JPG 328042 700 600 226.72
Golden_19_3.JPG 329161 672 623 236.05
Golden_20_3.JPG 333618 688 589 229.25
Golden_21_3.JPG 315626 645 609 219.08
Golden_22_3.JPG 279182 616 563 193.42
Golden_23_3.JPG 319838 644 607 227.74
Golden_24_3.JPG 336852 712 638 241.11
Golden_25_3.JPG 318909 621 636 230.26

Regression analysis for estimation of the weight

  • Mango
Parameters Value
Coefficient 0.002
Intercept 215.755
Mango_Regression
Score Value
Training 0.97
Test 0.96
  • Apple golden
Parameters Value
Coefficient 0.0008
Intercept 16.0667
Mango_Regression
Score Value
Training 0.91
Test 0.92

Contact

Cao Le Cong Minh - caolecongminh1997@gmail.com

About

Developed a computer vision-based grading system for mangoes and apples using image processing and machine learning techniques. Achieved approximately 95% weight estimation accuracy with a sample size of 200.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published