Skip to content

MetaFBP: Learning to Learn High-Order Predictor for Personalized Facial Beauty Prediction (ACM MM 2023)

License

Notifications You must be signed in to change notification settings

MetaVisionLab/MetaFBP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MetaFBP: Learning to Learn High-Order Predictor for Personalized Facial Beauty Prediction

🛠️Setup

Runtime

The main python libraries we use:

  • Python 3.8
  • torch 1.8.1
  • numpy 1.19.2

Datasets

Please create a directory named datasets in current directory, then download these following datasets and unzip into datasets:

Download link: GoogleDrive or Quark

You can also change the root directory of datasets by modifying the default value of the argument --data-root in train_fea.py[L34], train.py[L40], and test.py[L59]:

    # train_fea.py, Line 34
    parser.add_argument('--data-root', type=str, default='./datasets')
    # train.py, Line 40
    parser.add_argument('--data-root', type=str, default='./datasets')
    # test.py, Line 59
    parser.add_argument('--data-root', type=str, default='./datasets')

🎢Run

After finishing above steps, your directory structure of code may like this:

MetaFBP/
    |–– data/
    |–– dataset/
        |–– FBP5500/
        |–– FBPSCUT/
        |–– US10K/
    |–– model/
    |–– util/
    README.md
    test.py
    test_fea.py
    train.py
    train.sh
    train_fea.py
    train_fea.sh
  1. First of all, please train the universal feature extractor for each dataset:

    bash train_fea.sh PFBP-SCUT5500
    bash train_fea.sh PFBP-SCUT500
    bash train_fea.sh PFBP-US10K

    Usage of train_fea.sh:

    bash train_fea.sh {arg1=dataset}
    
    • dataset specifies which dataset to train on, available ones are: PFBP-SCUT5500,PFBP-SCUT500, PFBP-US10K
  2. Once the universal feature extractor is ready, you can run the experiments of PFBP task. For example, the following cmd runs the experiment of MetaFBP-R on PFBP-SCUT5500 benchmark with 5-way K-shot regression:

    bash train.sh MetaFBP-R PFBP-SCUT5500

    Usage of train.sh:

    bash train.sh {arg1=model} {arg2=dataset}
    
    • model specifies which model to use, available ones are: Base-MAML,MetaFBP-R, MetaFBP-T
    • dataset specifies which dataset to train and test on, available ones are: PFBP-SCUT5500,PFBP-SCUT500, PFBP-US10K

📌Citation

If you would like to cite our work, the following bibtex code may be helpful:

@inproceedings{lin2023metafbp,
    title={MetaFBP: Learning to Learn High-Order Predictor for Personalized Facial Beauty Prediction},
    author={Lin, Luojun and Shen, Zhifeng and Yin, Jia-Li and Liu, Qipeng and Yu, Yuanlong and Chen, Weijie},
    booktitle={Proceedings of the 31st ACM International Conference on Multimedia},
    year={2023},
}

🔗Acknowledgements

⚖️License

This source code is released under the MIT license. View it here

About

MetaFBP: Learning to Learn High-Order Predictor for Personalized Facial Beauty Prediction (ACM MM 2023)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published