Skip to content

Code-along lab session and exercises for Software Engineering for Media 2023/24

Notifications You must be signed in to change notification settings

Mehdialmoo/Introduction_to_DeepLearning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SEM Lab Session

Environment setup

conda env create -f environment.yml
conda activate sem-deep-learning
mkdir model_dir saved_models

Getting datasets

Use this to host the files online: https://www.station307.com/#/ - will make the files available to stream from host machine over network until browser tab is closed, very handy in a classroom setting.

Metmusem

mkdir -p data/metmuseum
wget <station307-url> -O data/metmuseum/MetObjects.csv

MNIST

  1. Download the MNIST as .jpg dataset from the station307 url
wget <station307-url> -O mnist.zip
  1. Extract to data dir
mkdir -p data/MNIST/raw
unzip mnist.zip -d data/MNIST
mv data/MNIST/trainingSet/trainingSet/* data/MNIST/raw
  1. Remove unneeded files
rm -r mnist.zip data/MNIST/testS* data/MNIST/trainingS* 
  1. Create filepath to label mapping:
cd data/MNIST && chmod +x create_csv.sh
./create_csv.sh raw

About

Code-along lab session and exercises for Software Engineering for Media 2023/24

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.7%
  • Python 1.3%