Skip to content

Modello Random Forest per la creazione di una mappa di suscettibilità da frane superficiali // // Tesi di Laurea Magistrale in Scienze della Terra (Geologia Applicata) - Università degli Studi di Milano

Notifications You must be signed in to change notification settings

MattiaRaffa/RF-VDA-landslide-map

Folders and files

NameName
Last commit message
Last commit date

Latest commit

c508a6f · Apr 27, 2021

History

83 Commits
Aug 13, 2020
Aug 13, 2020
Feb 12, 2021
Apr 27, 2021
Aug 13, 2020
Apr 27, 2021
Aug 13, 2020
Feb 12, 2021
Feb 12, 2021
Sep 16, 2020
Aug 13, 2020
Sep 7, 2020
Aug 16, 2020
Aug 16, 2020
Feb 12, 2021

Repository files navigation

Shallow landslide susceptibility analysis using Random Forest method in Val D'Aosta Valley

Published

ℹ️ About

The aim of our study was to derive a susceptibility model adaptable to climate changes, through the inclusion of variables summarizing intense rainfall and snowmelt processes. We selected the territory of the Mont-Emilius and Mont-Cervin Mountain Communities (northern Italy) as study area. To define the summary variables, we investigated the relationships between landslide occurrences and meteorological events (reference period 1991-2020). For landslide susceptibility mapping, we set up a Generalized Additive Model. For model training, we extracted from the local inventory 298 dated landslide points and we selected 300 random non-landslide points. We defined a reference model through variable penalization (relief, NDVI, land cover and geology predictors).

↘️ Workflow

alt text

mergeVDA = quota [Digital Elevation Model (DEM) dal geoportale VDA]

slope = pendenza derivata dal DEM

aspect = esposizione del versante derivato dal DEM

curvatura =

sumSWEabs = somma dei file Snow Water Equivalent (SWE)

SWEmin = valori minimi di SWE entro bacini di accumulo

GEO = geologia classata

LAND = uso del suolo classato

⚙️ run v2

Shape of x,y train=> (575, 7)

Shape of x,y test=> (144, 7)

RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': 4, 'oob_score': True, 'random_state': None, 'verbose': True, 'warm_start': False}

Training Set F1-Score=> 1.0

Testing Set F1-Score=> 0.797

Final OOB error:0.202

Best importance:

0.29, 'DEM 2'

0.24, 'sumSWEabs'

0.15, 'SLOPE'

0.11, 'SWEmin'

0.11, 'ASPECT'

0.07, 'land cover'

0.04, 'GEO'

alt text

-OOb error graph

alt text

-500x500 probability of landslide map-

⚙️ run v1

RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 5000, 'n_jobs': 4, 'oob_score': True, 'random_state': None, 'verbose': True, 'warm_start': True}

estimators= 2000

Test accuracy: 1.0

Best importance scores:

0.31, 'mergeVDA'

0.24, 'sumSWEabs'

0.19, 'slope'

0.13, 'SWEmin'

0.12, 'aspect'

Last OOB error: 0.195

alt text

alt text

🗺️ Final product

alt text

📃 Cite

Raffa, M., Camera, C.A.S., Bajni, G., 2020. Il ruolo della neve nell’innesco di frane superficiali valutato con random forest: il caso del Mont Cervin e del Mont Emilius in Valle D’Aosta (Tesi di Laurea Magistrale in Geologia Applicata al Territorio, all’Ambiente e alle Risorse Idriche). Università degli Studi di Milano.

@phdthesis{raffa_il_2020,
	type = {Tesi di Laurea Magistrale in Geologia Applicata al Territorio, all’Ambiente e alle Risorse Idriche},
	title = {Il ruolo della neve nell'innesco di frane superficiali valutato con random forest:  il caso del Mont Cervin e del Mont Emilius in Valle D'Aosta},
	language = {it},
	school = {Università degli Studi di Milano},
	author = {Raffa, Mattia and Camera, Corrado A. S. and Bajni, Greta},
	year = {2020}
}

Camera, C.A.S., Bajni, G., Corno, I., Raffa, M., Stevenazzi, S., Apuani, T., 2021. Introducing intense rainfall and snowmelt variables to implement a process-related non-stationary shallow landslide susceptibility analysis. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2021.147360

@article{camera_introducing_2021,
	title = {Introducing intense rainfall and snowmelt variables to implement a process-related non-stationary shallow landslide susceptibility analysis},
	issn = {0048-9697},
	url = {https://www.sciencedirect.com/science/article/pii/S0048969721024311},
	doi = {https://doi.org/10.1016/j.scitotenv.2021.147360},
	journal = {Science of The Total Environment},
	author = {Camera, Corrado A. S. and Bajni, Greta and Corno, Irene and Raffa, Mattia and Stevenazzi, Stefania and Apuani, Tiziana},
	year = {2021},
	keywords = {Aosta Valley, Climate variables, Flowslides, Generalized Additive Models, Slides in soil, Snow Water Equivalent}
}

📦 Resources

https://github.com/PAULGOYES/Landslide_RL_MLP_DNN

Para el uso debido de la información se recomienda usar la siguiente cita: P. Goyes-Peñafiel y A. Hernandez-Rojas (2020). Doble evaluación de la susceptibilidad por movimientos en masa basados en la solución del problema de clasificación con redes neuronales artificiales y Pesos de Evidencia. https://zenodo.org/badge/latestdoi/250913053

💾 Data sources

www.cf.regione.vda.it

www.catastodissesti.partout.it/#

www.mappe.regione.vda.it/pub/geodissesti

www.geologiavda.partout.it/GeoCartaGeo?l=it

www.geoportale.regione.vda.it/mappe/

www.arpa.vda.it/it