This repository implements a Hybrid Salp Swarm and Slime Mold Optimization Algorithm (Hybrid SSO-SMA) for optimizing the switching matrix of shaded photovoltaic (PV) arrays. The goal is to dynamically reconfigure PV arrays to enhance power output under partial shading conditions.
- Hybrid Optimization: Combines the strengths of Salp Swarm Optimizer (SSA) and Slime Mold Algorithm (SMA).
- Dynamic Reconfiguration: Optimizes PV module arrangements to minimize power losses.
- Detailed Outputs: Provides visualizations, power enhancement calculations, and convergence analysis.
Mahmood-Anaam-hybrid-sso-sma-shaded-pv-switch-matrix/
├── README.md # Project documentation
├── doc/ # Documentation files (optional)
└── src/ # Source code files
├── DisplayResultsDiaryFile.txt # Logs simulation results
├── SMA.m # Slime Mold Algorithm implementation
├── SSA.m # Salp Swarm Algorithm implementation
├── SSSMA.m # Hybrid SSO-SMA algorithm implementation
├── changearrangement.m # Helper function for matrix rearrangement
├── getInfo.m # Retrieves power metrics and configurations
├── initialization.m # Initializes search agents
├── main.m # Main script to run the simulation
├── objective_function.m # Defines the fitness function
└── randomize_matrix_vertically.m # Randomizes matrix rows
- Clone the repository:
git clone https://github.com/Mahmood-Anaam/hybrid-sso-sma-shaded-pv-switch-matrix.git
- Open MATLAB and navigate to the
src/
directory. - Run the main script:
main.m
- Optimized PV Array Configuration: Displays the rearranged PV matrix.
- Power Enhancement Percentage: Calculates the improvement in power output.
- Convergence Curve: Shows the optimization progress.
- Visualization: Provides a comparison of original and optimized configurations.