Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dwi2adc: Change IVIM interface #3044

Open
wants to merge 2 commits into
base: dev
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
194 changes: 118 additions & 76 deletions cpp/cmd/dwi2adc.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,10 @@
using namespace MR;
using namespace App;

using value_type = float;

constexpr value_type ivim_cutoff_default = value_type(120);

// clang-format off
void usage ()
{
Expand All @@ -33,137 +37,175 @@ void usage ()
SYNOPSIS = "Calculate ADC and/or IVIM parameters.";

DESCRIPTION
+ "By default, the command will estimate the Apparent Diffusion Coefficient (ADC) "
"using the isotropic mono-exponential model: S(b) = S(0) * exp(-D * b). "
"The output consists of 2 volumes, respectively S(0) and D."
+ "The command estimates the Apparent Diffusion Coefficient (ADC) "
"using the isotropic mono-exponential model: S(b) = S(0) * exp(-ADC * b). "
"The value of S(0) can be optionally exported using command-line option -szero."

+ "When using the -ivim option, the command will additionally estimate the "
"Intra-Voxel Incoherent Motion (IVIM) parameters f and D', i.e., the perfusion "
"fraction and the pseudo-diffusion coefficient. IVIM assumes a bi-exponential "
"model: S(b) = S(0) * ((1-f) * exp(-D * b) + f * exp(-D' * b)). This command "
"adopts a 2-stage fitting strategy, in which the ADC is first estimated based on "
"the DWI data with b > cutoff, and the other parameters are estimated subsequently. "
"The output consists of 4 volumes, respectively S(0), D, f, and D'."

+ "Note that this command ignores the gradient orientation entirely. This approach is "
"therefore only suited for mean DWI (trace-weighted) images or for DWI data collected "
"with isotropically-distributed gradient directions.";
"the DWI data with b > cutoff, and the other parameters are estimated subsequently."

+ "Note that this command ignores the gradient orientation entirely. "
"If a conventional DWI series is provided as input, "
"all volumes will contribute equally toward the model fit "
"irrespective of direction of diffusion sensitisation; "
"DWI data should therefore ideally consist of isotropically-distributed gradient directions.";
"The approach can alternative be applied to mean DWI (trace-weighted) images.";

ARGUMENTS
+ Argument ("input", "the input image.").type_image_in ()
+ Argument ("output", "the output image.").type_image_out ();
+ Argument ("input", "the input image").type_image_in()
+ Argument ("output", "the output ADC image").type_image_out();

OPTIONS
+ Option ("ivim", "also estimate IVIM parameters in 2-stage fit.")
+ Option("szero",
"export image of S(0); "
"that is, the model-estimated signal intensity in the absence of diffusion weighting")
+ Argument("image").type_image_out()

+ Option ("ivim", "also estimate IVIM parameters in 2-stage fit, "
"yielding two images encoding signal fraction and diffusivity respectively of perfusion1 component")
+ Argument("fraction").type_image_out()
+ Argument("diffusivity").type_image_out()

+ Option ("cutoff", "minimum b-value for ADC estimation in IVIM fit (default = 120 s/mm^2).")
+ Argument ("bval").type_integer (0, 1000)
+ Option ("cutoff", "minimum b-value for ADC estimation in IVIM fit "
"(default = " + str(ivim_cutoff_default) + " s/mm^2).")
+ Argument ("bval").type_float (0.0, 1000.0)

+ DWI::GradImportOptions();

REFERENCES
+ "Le Bihan, D.; Breton, E.; Lallemand, D.; Aubin, M.L.; Vignaud, J.; Laval-Jeantet, M. "
"Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. "
"Radiology, 1988, 168, 497–505."

+ "Jalnefjord, O.; Andersson, M.; Montelius; M.; Starck, G.; Elf, A.; Johanson, V.; Svensson, J.; Ljungberg, M. "
"Comparison of methods for estimation of the intravoxel incoherent motion (IVIM) "
"diffusion coefficient (D) and perfusion fraction (f). "
"Magn Reson Mater Phy, 2018, 31, 715–723.";
}
// clang-format on

using value_type = float;

class DWI2ADC {
public:
DWI2ADC(const Eigen::VectorXd &bvals, size_t dwi_axis, bool ivim, int cutoff)
: bvals(bvals), dwi(bvals.size()), adc(2), dwi_axis(dwi_axis), ivim(ivim), cutoff(cutoff) {
Eigen::MatrixXd b(bvals.size(), 2);
DWI2ADC(const Header &header, const Eigen::VectorXd &bvals, const size_t dwi_axis)
: H(header),
bvals(bvals),
dwi(bvals.size()),
b(bvals.size(), 2),
logszero_and_adc(2),
dwi_axis(dwi_axis),
ivim_cutoff(std::numeric_limits<value_type>::signaling_NaN()) {
for (ssize_t i = 0; i < b.rows(); ++i) {
b(i, 0) = 1.0;
b(i, 1) = -bvals(i);
}
binv = Math::pinv(b);
if (ivim) {
// select volumes with b-value > cutoff
for (ssize_t j = 0; j < bvals.size(); j++) {
if (bvals[j] > cutoff)
idx.push_back(j);
}
const Eigen::MatrixXd bsub = b(idx, Eigen::all);
bsubinv = Math::pinv(bsub);
}

void set_bzero_path(const std::string &path) { szero_image = Image<value_type>::create(path, H); }

void initialise_ivim(const std::string &ivimfrac_path, const std::string &ivimdiff_path, const value_type cutoff) {
ivimfrac_image = Image<value_type>::create(ivimfrac_path, H);
ivimdiff_image = Image<value_type>::create(ivimdiff_path, H);
ivim_cutoff = cutoff;
// select volumes with b-value > cutoff
for (ssize_t j = 0; j < bvals.size(); j++) {
if (bvals[j] > cutoff)
ivim_suprathresh_idx.push_back(j);
}
const Eigen::MatrixXd bsub = b(ivim_suprathresh_idx, Eigen::all);
bsubinv = Math::pinv(bsub);
}

template <class DWIType, class ADCType> void operator()(DWIType &dwi_image, ADCType &adc_image) {
void operator()(Image<value_type> &dwi_image, Image<value_type> &adc_image) {
for (auto l = Loop(dwi_axis)(dwi_image); l; ++l) {
value_type val = dwi_image.value();
const value_type val = dwi_image.value();
dwi[dwi_image.index(dwi_axis)] = val > 1.0e-12 ? std::log(val) : 1.0e-12;
}

if (ivim) {
dwisub = dwi(idx);
adc = bsubinv * dwisub;
if (std::isnan(ivim_cutoff)) {
logszero_and_adc = binv * dwi;
} else {
adc = binv * dwi;
dwisub = dwi(ivim_suprathresh_idx);
logszero_and_adc = bsubinv * dwisub;
}

adc_image.value() = value_type(logszero_and_adc[1]);

if (std::isnan(ivim_cutoff)) {
if (szero_image.valid()) {
assign_pos_of(adc_image).to(szero_image);
szero_image.value() = value_type(std::exp(logszero_and_adc[0]));
}
return;
}

adc_image.index(3) = 0;
adc_image.value() = std::exp(adc[0]);
adc_image.index(3) = 1;
adc_image.value() = adc[1];

if (ivim) {
const double A = std::exp(adc[0]);
const double D = adc[1];
Eigen::VectorXd logS = adc[0] - D * bvals.array();
Eigen::VectorXd logdiff = (dwi.array() > logS.array()).select(dwi, logS);
logdiff.array() += Eigen::log(1 - Eigen::exp(-(dwi - logS).array().abs()));
adc = binv * logdiff;
const double C = std::exp(adc[0]);
const double Dstar = adc[1];
const double S0 = A + C;
const double f = C / S0;
adc_image.index(3) = 0;
adc_image.value() = S0;
adc_image.index(3) = 2;
adc_image.value() = f;
adc_image.index(3) = 3;
adc_image.value() = Dstar;
const double A = std::exp(logszero_and_adc[0]);
const double D = logszero_and_adc[1];
const Eigen::VectorXd logS = logszero_and_adc[0] - D * bvals.array();
Eigen::VectorXd logdiff = (dwi.array() > logS.array()).select(dwi, logS);
logdiff.array() += Eigen::log(1 - Eigen::exp(-(dwi - logS).array().abs()));
logszero_and_adc = binv * logdiff;
const double C = std::exp(logszero_and_adc[0]);
const double Dstar = logszero_and_adc[1];
const double S0 = A + C;
const double f = C / S0;
if (szero_image.valid()) {
assign_pos_of(adc_image).to(szero_image);
szero_image.value() = value_type(S0);
}

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

warning: narrowing conversion from 'double' to 'value_type' (aka 'float') [bugprone-narrowing-conversions]

S0;
^

assign_pos_of(adc_image).to(ivimfrac_image, ivimdiff_image);
ivimfrac_image.value() = value_type(f);
ivimdiff_image.value() = value_type(Dstar);
}

private:
Eigen::VectorXd bvals, dwi, dwisub, adc;
Eigen::MatrixXd binv, bsubinv;
std::vector<size_t> idx;
const Header H;
Eigen::VectorXd bvals, dwi, dwisub, logszero_and_adc;

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

warning: member 'H' of type 'const Header' is const qualified [cppcoreguidelines-avoid-const-or-ref-data-members]

 H;
 ^

Eigen::MatrixXd b, binv;
const size_t dwi_axis;
const bool ivim;
const int cutoff;

// Optional export
Image<value_type> szero_image;

// Members relating to IVIM operation
std::vector<size_t> ivim_suprathresh_idx;
Eigen::MatrixXd bsubinv;
Image<value_type> ivimfrac_image;
Image<value_type> ivimdiff_image;
value_type ivim_cutoff;
};

void run() {
auto dwi = Header::open(argument[0]).get_image<value_type>();
auto grad = DWI::get_DW_scheme(dwi);
auto H_in = Header::open(argument[0]);
auto grad = DWI::get_DW_scheme(H_in);

size_t dwi_axis = 3;
while (dwi.size(dwi_axis) < 2)
while (H_in.size(dwi_axis) < 2)
++dwi_axis;
INFO("assuming DW images are stored along axis " + str(dwi_axis));

auto opt = get_options("ivim");
bool ivim = opt.size();
int bmin = get_option_value("cutoff", 120);
Header H_out(H_in);
H_out.datatype() = DataType::Float32;
H_out.datatype().set_byte_order_native();
H_out.ndim() = 3;
DWI::stash_DW_scheme(H_out, grad);
PhaseEncoding::clear_scheme(H_out);

DWI2ADC functor(H_out, grad.col(3), dwi_axis);

Header header(dwi);
header.datatype() = DataType::Float32;
DWI::stash_DW_scheme(header, grad);
PhaseEncoding::clear_scheme(header);
header.ndim() = 4;
header.size(3) = ivim ? 4 : 2;
auto opt = get_options("szero");
if (!opt.empty())
functor.set_bzero_path(opt[0][0]);
opt = get_options("ivim");
if (!opt.empty())
functor.initialise_ivim(opt[0][0], opt[0][1], get_option_value("cutoff", ivim_cutoff_default));

auto adc = Image<value_type>::create(argument[1], header);
auto dwi = H_in.get_image<value_type>();
auto adc = Image<value_type>::create(argument[1], H_out);

ThreadedLoop("computing ADC values", dwi, 0, 3).run(DWI2ADC(grad.col(3), dwi_axis, ivim, bmin), dwi, adc);
ThreadedLoop("computing ADC values", H_out).run(functor, dwi, adc);
}
14 changes: 8 additions & 6 deletions docs/reference/commands/dwi2adc.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,22 +15,24 @@ Usage

dwi2adc [ options ] input output

- *input*: the input image.
- *output*: the output image.
- *input*: the input image
- *output*: the output ADC image

Description
-----------

By default, the command will estimate the Apparent Diffusion Coefficient (ADC) using the isotropic mono-exponential model: S(b) = S(0) * exp(-D * b). The output consists of 2 volumes, respectively S(0) and D.
The command estimates the Apparent Diffusion Coefficient (ADC) using the isotropic mono-exponential model: S(b) = S(0) * exp(-ADC * b). The value of S(0) can be optionally exported using command-line option -szero.

When using the -ivim option, the command will additionally estimate the Intra-Voxel Incoherent Motion (IVIM) parameters f and D', i.e., the perfusion fraction and the pseudo-diffusion coefficient. IVIM assumes a bi-exponential model: S(b) = S(0) * ((1-f) * exp(-D * b) + f * exp(-D' * b)). This command adopts a 2-stage fitting strategy, in which the ADC is first estimated based on the DWI data with b > cutoff, and the other parameters are estimated subsequently. The output consists of 4 volumes, respectively S(0), D, f, and D'.
When using the -ivim option, the command will additionally estimate the Intra-Voxel Incoherent Motion (IVIM) parameters f and D', i.e., the perfusion fraction and the pseudo-diffusion coefficient. IVIM assumes a bi-exponential model: S(b) = S(0) * ((1-f) * exp(-D * b) + f * exp(-D' * b)). This command adopts a 2-stage fitting strategy, in which the ADC is first estimated based on the DWI data with b > cutoff, and the other parameters are estimated subsequently.

Note that this command ignores the gradient orientation entirely. This approach is therefore only suited for mean DWI (trace-weighted) images or for DWI data collected with isotropically-distributed gradient directions.
Note that this command ignores the gradient orientation entirely. If a conventional DWI series is provided as input, all volumes will contribute equally toward the model fit irrespective of direction of diffusion sensitisation; DWI data should therefore ideally consist of isotropically-distributed gradient directions.

Options
-------

- **-ivim** also estimate IVIM parameters in 2-stage fit.
- **-szero image** export image of S(0); that is, the model-estimated signal intensity in the absence of diffusion weighting

- **-ivim fraction diffusivity** also estimate IVIM parameters in 2-stage fit, yielding two images encoding signal fraction and diffusivity respectively of perfusion1 component

- **-cutoff bval** minimum b-value for ADC estimation in IVIM fit (default = 120 s/mm^2).

Expand Down
17 changes: 15 additions & 2 deletions testing/binaries/tests/dwi2adc/default
Original file line number Diff line number Diff line change
@@ -1,5 +1,18 @@
#!/bin/bash
# Basic test of default operation of dwi2adc command
# COmpares output to that generated from a prior software version
dwi2adc dwi2adc/in.mif - | \
# Compares output to that generated from a prior software version
#
# Note that in the pre-generated reference output test data,
# dwi2adc created a single output image,
# where the first volume was S(0) and the second volume was ADC.
# The updated interface involves writing a compulsory ADC image,
# and an optional S(0) volume written to a different image
# using explicit command-line option -szero.
# In order to test the output of this command against the pre-existing reference
# without necessitating the re-generation of reference test data,
# these are explicitly concatenated before comparing to the reference data

dwi2adc dwi2adc/in.mif tmp_adc.mif -szero tmp_szero.mif -force

mrcat tmp_szero.mif tmp_adc.mif -axis 3 - | \
testing_diff_image - dwi2adc/out.mif -frac 1e-5
Loading