Skip to content

Commit

Permalink
Removed anisotropic kernel creation. Figured out that I was
Browse files Browse the repository at this point in the history
unneccesarily exponentiating a diagonalizable matrix. Removed
timescaling init, removed tests for anisotropic kernel and
timescaling.
  • Loading branch information
jdetle committed Jul 7, 2016
1 parent 7492455 commit 9418cdc
Show file tree
Hide file tree
Showing 2 changed files with 8 additions and 77 deletions.
58 changes: 7 additions & 51 deletions package/MDAnalysis/analysis/diffusionmap.py
Original file line number Diff line number Diff line change
Expand Up @@ -260,8 +260,7 @@ class DiffusionMap(object):
the collective coordinates.
"""

def __init__(self, u, epsilon=1, manifold_density=None,
timescale=1, **kwargs):
def __init__(self, u, epsilon=1, **kwargs):
"""
Parameters
-------------
Expand All @@ -273,10 +272,6 @@ def __init__(self, u, epsilon=1, manifold_density=None,
epsilon : Float
Specifies the method used for the choice of scale parameter in the
diffusion map. More information in [1], [2] and [3], Default: 1.
manifold_density: list, optional
The list has to have the same length as the trajectory.
With 'None' the weight of each frame of the trajectory will be the
same, Default : None
timescale: int, optional
The number of steps in the random walk, large t reflects global
structure whereas small t indicates local structure, Default: 1
Expand All @@ -296,21 +291,6 @@ def __init__(self, u, epsilon=1, manifold_density=None,
"be very slow to compute. Consider picking a larger "
"step size in distance matrix initialization.")

# determines length of diffusion process
self._timescale = timescale

if manifold_density is None:
# weights do not apply to metric but density of data
self._weights_ker = np.ones((self._nframes,))
else:
if manifold_density.shape[0] != self._nframes:
raise ValueError("The weight should have the same length as "
'the trajectory')
else:
# density weights are constructed as relative to the mean
self._weights_ker = (np.asarray(manifold_density,
dtype=np.float64) /
np.mean(manifold_density))

def run(self):
# run only if distance matrix not already calculated
Expand All @@ -320,36 +300,12 @@ def run(self):
self._epsilon)
# take negative exponent of scaled matrix to create Isotropic kernel
self._kernel = np.exp(-self._scaled_matrix)
# define an anistropic diffusion term q
q_vector = np.zeros((self._nframes, ))
# weights should reflect the density of the points on the manifold
for i in range(self._nframes):
q_vector[i] = np.dot(self._kernel[i, :], self._weights_ker)

# Form a new kernel from the anisotropic diffusion term q
self._kernel /= (np.sqrt(q_vector[:, np.newaxis
].dot(q_vector[np.newaxis])))

# Weighted Graph Laplacian normalization on this new graph
d_vector = np.zeros((self._nframes, ))
for i in range(self._nframes):
d_vector[i] = np.dot(self._kernel[i, :], self._weights_ker)

for i in range(self._nframes):
self._kernel[i, :] = self._kernel[i, :] * self._weights_ker

# Define anisotropic transition by dividing kernel by this term
self._kernel /= np.sqrt(d_vector[:, np.newaxis].dot(d_vector[np.newaxis]))

# Apply timescaling
if self._timescale > 1:
self._kernel = np.linalg.matrix_power(self._kernel,
self._timescale)

eigenvals, eigenvectors = np.linalg.eig(self._kernel)
eg_arg = np.argsort(eigenvals)
self.eigenvalues = eigenvals[eg_arg[::-1]]
self.eigenvectors = eigenvectors[eg_arg[::-1]]
D_inv = np.diag(1 / self._kernel.sum(1))
self._diff = np.dot(D_inv, self._kernel)
eigenvals, eigenvectors = np.linalg.eig(self._diff)
sort_idx = np.argsort(eigenvals)[::-1]
self.eigenvalues = eigenvals[sort_idx]
self.eigenvectors = eigenvectors[sort_idx]
self._calculated = True

def transform(self, n_eigenvectors, time):
Expand Down
27 changes: 1 addition & 26 deletions testsuite/MDAnalysisTests/analysis/test_diffusionmap.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,43 +37,18 @@ def test_eg(self):
# number of frames is trajectory is now 10 vs. 98
assert_equal(self.eigvals.shape, (self.dist.nframes, ))
# makes no sense to test values here, no physical meaning
del self.dmap

def test_dist_weights(self):
backbone = self.u.select_atoms('backbone')
weights_atoms = np.ones(len(backbone.atoms))
self.dist = diffusionmap.DistanceMatrix(self.u, select='backbone',
weights=weights_atoms)
self.dist.run()
del self.dist

def test_kernel_weights(self):
self.dist = diffusionmap.DistanceMatrix(self.u, select='backbone')
self.weights_ker = np.ones((self.dist.nframes, ))
self.dmap = diffusionmap.DiffusionMap(self.dist,
manifold_density=self.weights_ker)
self.dmap.run()
assert_array_almost_equal(self.eigvals, self.dmap.eigenvalues, decimal=5)
assert_array_almost_equal(self.eigvects, self.dmap.eigenvectors, decimal=6)
del self.dist, self.dmap

@raises(ValueError)
def test_wrong_kernel_weights(self):
self.dmap = diffusionmap.DiffusionMap(self.dist,
manifold_density=np.ones((2,)))
del self.dmap

def test_timescaling(self):
self.dmap = diffusionmap.DiffusionMap(self.u, timescale=2)
self.dmap.run()
assert_equal(self.dmap.eigenvalues.shape, (self.dmap._nframes, ))
del self.dmap

def test_different_steps(self):
self.dmap = diffusionmap.DiffusionMap(self.u, select='backbone', step=3)
self.dmap.run()
del self.dmap, self.dist


def test_transform(self):
self.n_eigenvectors = 4
self.dmap = diffusionmap.DiffusionMap(self.u)
Expand Down

0 comments on commit 9418cdc

Please sign in to comment.