Skip to content
This repository has been archived by the owner on Nov 4, 2024. It is now read-only.

Commit

Permalink
Merge pull request #10 from LuxDL/ap/generalize
Browse files Browse the repository at this point in the history
Generalize the generators to complex numbers
  • Loading branch information
avik-pal authored Dec 10, 2023
2 parents e21fbed + 5ffa3a0 commit 9b101d8
Show file tree
Hide file tree
Showing 8 changed files with 172 additions and 102 deletions.
10 changes: 9 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
name = "WeightInitializers"
uuid = "d49dbf32-c5c2-4618-8acc-27bb2598ef2d"
authors = ["Avik Pal <avikpal@mit.edu> and contributors"]
version = "0.1.2"
version = "0.1.3"

[deps]
PackageExtensionCompat = "65ce6f38-6b18-4e1d-a461-8949797d7930"
PartialFunctions = "570af359-4316-4cb7-8c74-252c00c2016b"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
Expand All @@ -16,6 +17,13 @@ CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
WeightInitializersCUDAExt = "CUDA"

[compat]
CUDA = "4, 5"
PackageExtensionCompat = "1"
PartialFunctions = "1"
Random = "<0.0.1, 1"
SpecialFunctions = "2"
Statistics = "<0.01, 1"
julia = "1.6"

[extras]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
16 changes: 9 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,13 @@
[![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac)
[![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle)

This package is a light dependency providing common weight initialization schemes for deep learning models.
This package is a light dependency providing common weight initialization schemes for deep
learning models.

## Example

These code snippets are just provided to give a high level overview
of the functionalities of the package.
These code snippets are just provided to give a high level overview of the functionalities
of the package.

```julia
using WeightInitializers, Random
Expand Down Expand Up @@ -54,8 +55,8 @@ weights = weights_cl(2, 5)

## API

The package is meant to be working with deep learning
libraries such as F/Lux. All the methods take as input the chosen `rng` type and the dimension for the array.
The package is meant to be working with deep learning libraries such as F/Lux. All the
methods take as input the chosen `rng` type and the dimension for the AbstractArray.

```julia
weights = init(rng, dims...)
Expand All @@ -67,8 +68,9 @@ The `rng` is optional, if not specified a default one will be used.
weights = init(dims...)
```

If there is the need to use keyword arguments the methods can be called with just the `rng` (optionally)
and the keywords to get in return a function behaving like the two examples above.
If there is the need to use keyword arguments the methods can be called with just the `rng`
(optionally) and the keywords to get in return a function behaving like the two examples
above.

```julia
weights_init = init(rng; kwargs...)
Expand Down
22 changes: 22 additions & 0 deletions ext/WeightInitializersCUDAExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
module WeightInitializersCUDAExt

using WeightInitializers, CUDA
import WeightInitializers: __partial_apply, NUM_TO_FPOINT

const AbstractCuRNG = Union{CUDA.RNG, CURAND.RNG}

for T in ("16", "32", "64", "C16", "C32", "C64"), fname in (:ones, :zeros)
name = Symbol(fname, T)
TP = NUM_TO_FPOINT[Symbol(T)]
@eval begin
function WeightInitializers.$(name)(rng::AbstractCuRNG, dims::Integer...; kwargs...)
return CUDA.$(fname)($TP, dims...; kwargs...)
end
end

@eval function WeightInitializers.$(name)(rng::AbstractCuRNG; kwargs...)
return __partial_apply($name, (rng, (; kwargs...)))
end
end

end
17 changes: 0 additions & 17 deletions ext/WeightInitializersCUDAExt/WeightInitializersCUDAExt.jl

This file was deleted.

10 changes: 9 additions & 1 deletion src/WeightInitializers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,18 @@ module WeightInitializers

using PartialFunctions, Random, SpecialFunctions, Statistics

import PackageExtensionCompat: @require_extensions
function __init__()
@require_extensions
end

include("utils.jl")
include("initializers.jl")

export zeros32, ones32, rand32, randn32
export zeros64, ones64, rand64, randn64, zeros32, ones32, rand32, randn32, zeros16, ones16,
rand16, randn16
export zerosC64, onesC64, randC64, randnC64, zerosC32, onesC32, randC32, randnC32, zerosC16,
onesC16, randC16, randnC16
export glorot_normal, glorot_uniform
export kaiming_normal, kaiming_uniform
export truncated_normal
Expand Down
108 changes: 52 additions & 56 deletions src/initializers.jl
Original file line number Diff line number Diff line change
@@ -1,38 +1,29 @@
"""
zeros32([::AbstractRNG=_default_rng()], size...) -> Array{Float32, length(size)}
Return an `Array{Float32}` of zeros of the given `size`. (`rng` is ignored)
"""
zeros32(::AbstractRNG, dims...) = zeros(Float32, dims...)

"""
ones32([::AbstractRNG=_default_rng()], size...) -> Array{Float32, length(size)}
Return an `Array{Float32}` of ones of the given `size`. (`rng` is ignored)
"""
ones32(::AbstractRNG, dims...) = ones(Float32, dims...)

"""
randn32([::AbstractRNG=_default_rng()], size...) -> Array{Float32, length(size)}
Return an `Array{Float32}` of random numbers from a standard normal distribution of the
given `size`.
"""
randn32(rng::AbstractRNG, dims...) = randn(rng, Float32, dims...)

"""
rand32([::AbstractRNG=_default_rng()], size...) -> Array{Float32, length(size)}
Return an `Array{Float32}` of random numbers from a uniform distribution of the given
`size`.
"""
rand32(rng::AbstractRNG, dims...) = rand(rng, Float32, dims...)
for T in ("16", "32", "64", "C16", "C32", "C64"), fname in (:ones, :zeros, :rand, :randn)
name = Symbol(fname, T)
docstring = __generic_docstring(string(name))
TP = NUM_TO_FPOINT[Symbol(T)]
if fname in (:ones, :zeros)
@eval begin
@doc $docstring
function $(name)(rng::AbstractRNG, dims::Integer...; kwargs...)
return $(fname)($TP, dims...; kwargs...)
end
end
else
@eval begin
@doc $docstring
function $(name)(rng::AbstractRNG, dims::Integer...; kwargs...)
return $(fname)(rng, $TP, dims...; kwargs...)
end
end
end
end

"""
glorot_uniform([::AbstractRNG=_default_rng()], [T=Float32], size...;
gain = 1) -> Array{T, length(size)}
gain = 1) -> AbstractArray{T, length(size)}
Return an `Array{T}` of the given `size` containing random numbers drawn from a
Return an `AbstractArray{T}` of the given `size` containing random numbers drawn from a
uniform distribution on the interval ``[-x, x]``, where
`x = gain * sqrt(6 / (fan_in + fan_out))`. This method is described in [1] and also known as
Xavier initialization.
Expand All @@ -44,18 +35,18 @@ feedforward neural networks." _Proceedings of the thirteenth international confe
artificial intelligence and statistics_. 2010.
"""
function glorot_uniform(rng::AbstractRNG, ::Type{T}, dims::Integer...;
gain::Real=1) where {T <: Real}
gain::Number=1) where {T <: Number}
scale = T(gain) * sqrt(T(24) / sum(_nfan(dims...)))
return (rand(rng, T, dims...) .- T(1 // 2)) .* scale
end

"""
glorot_normal([::AbstractRNG=_default_rng()], [T=Float32], size...;
gain = 1) -> Array{T, length(size)}
gain = 1) -> AbstractArray{T, length(size)}
Return an `Array{T}` of the given `size` containing random numbers drawn from a normal
distribution with standard deviation `gain * sqrt(2 / (fan_in + fan_out))`. This method is
described in [1] and also known as Xavier initialization.
Return an `AbstractArray{T}` of the given `size` containing random numbers drawn from a
normal distribution with standard deviation `gain * sqrt(2 / (fan_in + fan_out))`. This
method is described in [1] and also known as Xavier initialization.
# References
Expand All @@ -64,16 +55,16 @@ feedforward neural networks." _Proceedings of the thirteenth international confe
artificial intelligence and statistics_. 2010.
"""
function glorot_normal(rng::AbstractRNG, ::Type{T}, dims::Integer...;
gain::Real=1) where {T <: Real}
gain::Number=1) where {T <: Number}
std = T(gain) * sqrt(T(2) / sum(_nfan(dims...)))
return randn(rng, T, dims...) .* std
end

"""
kaiming_uniform([::AbstractRNG=_default_rng()], [T=Float32], size...;
gain = √T(2)) -> Array{T, length(size)}
gain = √T(2)) -> AbstractArray{T, length(size)}
Return an `Array{T}` of the given `size` containing random numbers drawn from a
Return an `AbstractArray{T}` of the given `size` containing random numbers drawn from a
uniform distribution on the interval `[-x, x]`, where `x = gain * sqrt(3/fan_in)`.
# References
Expand All @@ -83,17 +74,17 @@ imagenet classification." _Proceedings of the IEEE international conference on c
vision_. 2015.
"""
function kaiming_uniform(rng::AbstractRNG, ::Type{T}, dims::Integer...;
gain::Real=T(2)) where {T <: Real}
gain::Number=T(2)) where {T <: Number}
bound = T(3) * gain / sqrt(T(first(_nfan(dims...))))
return (rand(rng, T, dims...) .- T(1 // 2)) .* 2 * bound
end

"""
kaiming_normal([::AbstractRNG=_default_rng()], [T=Float32], size...;
gain = √T(2)) -> Array{T, length(size)}
gain = √T(2)) -> AbstractArray{T, length(size)}
Return an `Array{T}` of the given `size` containing random numbers taken from a normal
distribution standard deviation `gain / sqrt(fan_in)`
Return an `AbstractArray{T}` of the given `size` containing random numbers taken from a
normal distribution standard deviation `gain / sqrt(fan_in)`
# References
Expand All @@ -102,23 +93,23 @@ imagenet classification." _Proceedings of the IEEE international conference on c
vision_. 2015.
"""
function kaiming_normal(rng::AbstractRNG, ::Type{T}, dims::Integer...;
gain::Real=T(2)) where {T <: Real}
gain::Number=T(2)) where {T <: Number}
std = gain / sqrt(T(first(_nfan(dims...))))
return randn(rng, T, dims...) .* std
end

"""
truncated_normal([::AbstractRNG=_default_rng()], [T=Float32], size...; mean = 0, std = 1,
lo = -2, hi = 2) -> Array{T, length(size)}
truncated_normal([::AbstractRNG=_default_rng()], [T=Float32], size...; mean = 0,
std = 1, lo = -2, hi = 2) -> AbstractArray{T, length(size)}
Return an `Array{T}` of the given `size` where each element is drawn from a truncated normal
distribution. The numbers are distributed like
Return an `AbstractArray{T}` of the given `size` where each element is drawn from a
truncated normal distribution. The numbers are distributed like
`filter(x -> lo ≤ x ≤ hi, mean .+ std .* randn(100))`.
"""
function truncated_normal(rng::AbstractRNG, ::Type{T}, dims::Integer...; mean=T(0),
std=T(1), lo=-T(2), hi=T(2)) where {T <: Real}
if (mean < lo - 2 * std) || (mean > hi + 2 * std)
@warn "Mean is more than 2 std outside the limits in truncated_normal, so the distribution of values may be inaccurate." maxlog=1
@warn "Mean is more than 2 std outside the limits in truncated_normal, so the distribution of values may be inaccurate."
end
l = _norm_cdf((lo - mean) / std)
u = _norm_cdf((hi - mean) / std)
Expand All @@ -134,29 +125,34 @@ end
# Default Fallbacks for all functions
for initializer in (:glorot_uniform, :glorot_normal, :kaiming_uniform, :kaiming_normal,
:truncated_normal)
NType = ifelse(initializer === :truncated_normal, Real, Number)
@eval function ($initializer)(dims::Integer...; kwargs...)
return $initializer(_default_rng(), Float32, dims...; kwargs...)
end
@eval function ($initializer)(rng::AbstractRNG, dims::Integer...; kwargs...)
return $initializer(rng, Float32, dims...; kwargs...)
end
@eval function ($initializer)(::Type{T}, dims::Integer...; kwargs...) where {T <: Real}
@eval function ($initializer)(::Type{T},
dims::Integer...; kwargs...) where {T <: $NType}
return $initializer(_default_rng(), T, dims...; kwargs...)
end
@eval function ($initializer)(rng::AbstractRNG; kwargs...)
return _partial_apply($initializer, (rng, (; kwargs...)))
return __partial_apply($initializer, (rng, (; kwargs...)))
end
@eval function ($initializer)(rng::AbstractRNG, ::Type{T}; kwargs...) where {T <: Real}
return _partial_apply($initializer, ((rng, T), (; kwargs...)))
@eval function ($initializer)(rng::AbstractRNG,
::Type{T}; kwargs...) where {T <: $NType}
return __partial_apply($initializer, ((rng, T), (; kwargs...)))
end
@eval ($initializer)(; kwargs...) = _partial_apply($initializer, (; kwargs...))
@eval ($initializer)(; kwargs...) = __partial_apply($initializer, (; kwargs...))
end

for initializer in (:zeros32, :ones32, :randn32, :rand32)
for tp in ("16", "32", "64", "C16", "C32", "C64"), func in (:zeros, :ones, :randn, :rand)
initializer = Symbol(func, tp)
@eval function ($initializer)(dims::Integer...; kwargs...)
return $initializer(_default_rng(), dims...; kwargs...)
end
@eval function ($initializer)(rng::AbstractRNG; kwargs...)
return _partial_apply($initializer, (rng, (; kwargs...)))
return __partial_apply($initializer, (rng, (; kwargs...)))
end
@eval ($initializer)(; kwargs...) = __partial_apply($initializer, (; kwargs...))
end
29 changes: 28 additions & 1 deletion src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,4 +14,31 @@ function _default_rng()
end

# This is needed if using `PartialFunctions.$` inside @eval block
_partial_apply(fn, inp) = fn$inp
__partial_apply(fn, inp) = fn$inp

const NAME_TO_DIST = Dict(:zeros => "an AbstractArray of zeros",
:ones => "an AbstractArray of ones",
:randn => "random numbers from a standard normal distribution",
:rand => "random numbers from a uniform distribution")
const NUM_TO_FPOINT = Dict(Symbol(16) => Float16, Symbol(32) => Float32,
Symbol(64) => Float64, :C16 => ComplexF16, :C32 => ComplexF32, :C64 => ComplexF64)

@inline function __funcname(fname::String)
fp = fname[(end - 2):end]
if Symbol(fp) in keys(NUM_TO_FPOINT)
return fname[1:(end - 3)], fp
else
return fname[1:(end - 2)], fname[(end - 1):end]
end
end

@inline function __generic_docstring(fname::String)
funcname, fp = __funcname(fname)
name = NAME_TO_DIST[Symbol(funcname)]
dist_type = NUM_TO_FPOINT[Symbol(fp)]
return """
$fname([::AbstractRNG=_default_rng()], size...; kwargs...) -> AbstractArray{$(dist_type), length(size)}
Return an `AbstractArray{$(dist_type)}` of the given `size` containing $(name).
"""
end
Loading

2 comments on commit 9b101d8

@avik-pal
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/96831

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.1.3 -m "<description of version>" 9b101d889a89f5853a173c39ca8b5428d499f14c
git push origin v0.1.3

Please sign in to comment.