This is the code of paper "ER: Equivariance Regularizer for Knowledge Graph Completion".
To preprocess the datasets, run the following commands.
cd code
python3 process_datasets.py
Now, the processed datasets are in the data
directory.
#################################### WN18RR ####################################
# CP
CUDA_VISIBLE_DEVICES=0 python3 learn.py --dataset WN18RR --model CP --rank 2000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 100 --regularizer ER --reg 1e-1 --max_epochs 200 \
--valid 5 -train -id 0 -save -weight
# ComplEx
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset WN18RR --model ComplEx --rank 2000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 100 --regularizer ER --reg 1e-1 --max_epochs 50 \
--valid 5 -train -id 0 -save -weight
# RESCAL
CUDA_VISIBLE_DEVICES=3 python3 learn.py --dataset WN18RR --model RESCAL --rank 256 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 1024 --regularizer ER_RESCAL --reg 1e-1 --max_epochs 200 \
--valid 5 -train -id 0 -save -weight
#################################### FB237 ####################################
# CP
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset FB237 --model CP --rank 2000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 100 --regularizer ER --reg 5e-2 --max_epochs 200 \
--valid 5 -train -id 0 -save
# ComplEx
CUDA_VISIBLE_DEVICES=7 python3 learn.py --dataset FB237 --model ComplEx --rank 2000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 2000 --regularizer ER --reg 5e-2 --max_epochs 200 \
--valid 5 -train -id 0 -save
# RESCAL
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset FB237 --model RESCAL --rank 512 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 512 --regularizer ER_RESCAL --reg 5e-2 --max_epochs 200 \
--valid 5 -train -id 0 -save
#################################### YAGO3-10 ####################################
# CP
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset YAGO3-10 --model CP --rank 1000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 1000 --regularizer ER --reg 5e-3 --max_epochs 200 \
--valid 5 -train -id 0 -save -weight
# ComplEx
CUDA_VISIBLE_DEVICES=2 python3 learn.py --dataset YAGO3-10 --model ComplEx --rank 1000 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 1000 --regularizer ER --reg 5e-3 --max_epochs 200 \
--valid 5 -train -id 0 -save
# RESCAL
CUDA_VISIBLE_DEVICES=0 python learn.py --dataset YAGO3-10 --model RESCAL --rank 512 --optimizer Adagrad \
--learning_rate 1e-1 --batch_size 1024 --regularizer ER_RESCAL --reg 5e-3 --max_epochs 200 \
--valid 5 -train -id 0 -save -weight
We refer to the code of kbc. Thanks for their contributions.