Skip to content

Commit

Permalink
update toc
Browse files Browse the repository at this point in the history
  • Loading branch information
LinXueyuanStdio committed Mar 13, 2018
1 parent 26ca447 commit fc04625
Show file tree
Hide file tree
Showing 79 changed files with 179,467 additions and 179,485 deletions.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -1,155 +1,155 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"X = np.zeros((100, 5), dtype='bool')\n",
"features = [\"bread\", \"milk\", \"cheese\", \"apples\", \"bananas\"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"for i in range(X.shape[0]):\n",
" if np.random.random() < 0.3:\n",
" # A bread winner\n",
" X[i][0] = 1\n",
" if np.random.random() < 0.5:\n",
" # Who likes milk\n",
" X[i][1] = 1\n",
" if np.random.random() < 0.2:\n",
" # Who likes cheese\n",
" X[i][2] = 1\n",
" if np.random.random() < 0.25:\n",
" # Who likes apples\n",
" X[i][3] = 1\n",
" if np.random.random() < 0.5:\n",
" # Who likes bananas\n",
" X[i][4] = 1\n",
" else:\n",
" # Not a bread winner\n",
" if np.random.random() < 0.5:\n",
" # Who likes milk\n",
" X[i][1] = 1\n",
" if np.random.random() < 0.2:\n",
" # Who likes cheese\n",
" X[i][2] = 1\n",
" if np.random.random() < 0.25:\n",
" # Who likes apples\n",
" X[i][3] = 1\n",
" if np.random.random() < 0.5:\n",
" # Who likes bananas\n",
" X[i][4] = 1\n",
" else:\n",
" if np.random.random() < 0.8:\n",
" # Who likes cheese\n",
" X[i][2] = 1\n",
" if np.random.random() < 0.6:\n",
" # Who likes apples\n",
" X[i][3] = 1\n",
" if np.random.random() < 0.7:\n",
" # Who likes bananas\n",
" X[i][4] = 1\n",
" if X[i].sum() == 0:\n",
" X[i][4] = 1 # Must buy something, so gets bananas\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[False False True True True]\n",
" [ True True False True False]\n",
" [ True False True True False]\n",
" [False False True True True]\n",
" [False True False False True]]\n"
]
}
],
"source": [
"print(X[:5])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt(\"affinity_dataset.txt\", X, fmt='%d')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"navigate_num": "#000000",
"navigate_text": "#333333",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700",
"sidebar_border": "#EEEEEE",
"wrapper_background": "#FFFFFF"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "12px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false,
"widenNotebook": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"X = np.zeros((100, 5), dtype='bool')\n",
"features = [\"bread\", \"milk\", \"cheese\", \"apples\", \"bananas\"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"for i in range(X.shape[0]):\n",
" if np.random.random() < 0.3:\n",
" # A bread winner\n",
" X[i][0] = 1\n",
" if np.random.random() < 0.5:\n",
" # Who likes milk\n",
" X[i][1] = 1\n",
" if np.random.random() < 0.2:\n",
" # Who likes cheese\n",
" X[i][2] = 1\n",
" if np.random.random() < 0.25:\n",
" # Who likes apples\n",
" X[i][3] = 1\n",
" if np.random.random() < 0.5:\n",
" # Who likes bananas\n",
" X[i][4] = 1\n",
" else:\n",
" # Not a bread winner\n",
" if np.random.random() < 0.5:\n",
" # Who likes milk\n",
" X[i][1] = 1\n",
" if np.random.random() < 0.2:\n",
" # Who likes cheese\n",
" X[i][2] = 1\n",
" if np.random.random() < 0.25:\n",
" # Who likes apples\n",
" X[i][3] = 1\n",
" if np.random.random() < 0.5:\n",
" # Who likes bananas\n",
" X[i][4] = 1\n",
" else:\n",
" if np.random.random() < 0.8:\n",
" # Who likes cheese\n",
" X[i][2] = 1\n",
" if np.random.random() < 0.6:\n",
" # Who likes apples\n",
" X[i][3] = 1\n",
" if np.random.random() < 0.7:\n",
" # Who likes bananas\n",
" X[i][4] = 1\n",
" if X[i].sum() == 0:\n",
" X[i][4] = 1 # Must buy something, so gets bananas\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[False False True True True]\n",
" [ True True False True False]\n",
" [ True False True True False]\n",
" [False False True True True]\n",
" [False True False False True]]\n"
]
}
],
"source": [
"print(X[:5])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"np.savetxt(\"affinity_dataset.txt\", X, fmt='%d')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"navigate_num": "#000000",
"navigate_text": "#333333",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700",
"sidebar_border": "#EEEEEE",
"wrapper_background": "#FFFFFF"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "12px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false,
"widenNotebook": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Loading

0 comments on commit fc04625

Please sign in to comment.