Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor accelerator teardown -> training type plugin teardown #7579

Merged
merged 73 commits into from
May 22, 2021
Merged
Show file tree
Hide file tree
Changes from 55 commits
Commits
Show all changes
73 commits
Select commit Hold shift + click to select a range
89f284d
Fix some test errors
Mar 23, 2021
80cfbff
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
Mar 23, 2021
536c132
checkpoint consolidation
Mar 24, 2021
f172101
Update ddp_spawn.py
shuyingsunshine21 Mar 24, 2021
bf70e43
Update test_metric_result_integration.py
shuyingsunshine21 Mar 24, 2021
ea74906
Update test_results.py
shuyingsunshine21 Mar 24, 2021
a9aae99
Update utils.py
shuyingsunshine21 Mar 24, 2021
70fe5da
Update utils.py
shuyingsunshine21 Mar 24, 2021
0d23d75
Update test_all_gather_grad.py
shuyingsunshine21 Mar 24, 2021
ca6f98b
Update test_all_gather_grad.py
shuyingsunshine21 Mar 24, 2021
c5053da
Merge pull request #1 from shuyingsunshine21/shuyingsunshine21-checkp…
shuyingsunshine21 Mar 24, 2021
9d4a2b8
Update test_results.py
shuyingsunshine21 Mar 24, 2021
7635b4f
Revert "Update test_results.py"
shuyingsunshine21 Mar 24, 2021
d64f90c
Revert "Merge pull request #1 from shuyingsunshine21/shuyingsunshine2…
shuyingsunshine21 Mar 24, 2021
dcdcd29
Revert "Update test_all_gather_grad.py"
shuyingsunshine21 Mar 24, 2021
8651d54
Revert "Update utils.py"
shuyingsunshine21 Mar 24, 2021
15f4b9e
Revert "Update utils.py"
shuyingsunshine21 Mar 24, 2021
250d0aa
Revert "Update test_results.py"
shuyingsunshine21 Mar 24, 2021
6c095b2
Revert "Update test_metric_result_integration.py"
shuyingsunshine21 Mar 24, 2021
8222dc9
Revert "Update ddp_spawn.py"
shuyingsunshine21 Mar 24, 2021
3a9fde9
Revert "checkpoint consolidation"
shuyingsunshine21 Mar 24, 2021
7a369f4
Revert "Revert "checkpoint consolidation""
shuyingsunshine21 Mar 24, 2021
b4a0b9e
Revert "Revert "Revert "checkpoint consolidation"""
shuyingsunshine21 Mar 24, 2021
5cf1db1
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
Mar 24, 2021
0ce7e05
Revert "Revert "Update ddp_spawn.py""
shuyingsunshine21 Mar 24, 2021
fe9736d
Revert "Revert "Update test_metric_result_integration.py""
shuyingsunshine21 Mar 24, 2021
c314ef6
Revert "Revert "Update test_results.py""
shuyingsunshine21 Mar 24, 2021
c3feda0
Revert "Revert "Update utils.py""
shuyingsunshine21 Mar 24, 2021
c759477
Revert "Revert "Update test_all_gather_grad.py""
shuyingsunshine21 Mar 24, 2021
7a8e540
Merge branch 'master' of https://github.com/shuyingsunshine21/pytorch…
Mar 24, 2021
ab8b849
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
Mar 24, 2021
4e67db2
modify distributed environment to make test pass
Mar 24, 2021
67b6188
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
Mar 25, 2021
179d47e
rebase
Apr 8, 2021
f9afa07
rebase to upstream master
Apr 8, 2021
b461e44
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
Apr 8, 2021
e1bbc4d
fix version for ddp plugin test
Apr 8, 2021
8270d0d
fix
Apr 8, 2021
803d5dd
fix
Apr 8, 2021
ce1a19b
changelog
Apr 8, 2021
c6a13be
Update CHANGELOG.md
carmocca Apr 9, 2021
e274758
Merge pull request #3 from shuyingsunshine21/ddp_plugin_test_fix
shuyingsunshine21 Apr 10, 2021
f337156
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
Apr 14, 2021
35bb931
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
Apr 15, 2021
c938a9c
rebase
May 11, 2021
ad93cde
rebase
May 11, 2021
8b5eca8
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
May 15, 2021
7b9f60d
teardown v1
May 17, 2021
8646210
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
May 17, 2021
3ae1c26
teardown v2
May 18, 2021
91f3805
add return type
May 18, 2021
0988fdf
add unittest and format
May 18, 2021
3b46d60
tpu based on device
May 18, 2021
8a33a4c
unitest add root device assertion
May 18, 2021
3aa9ba3
import os
May 18, 2021
ca3d88e
fix tpu test
May 18, 2021
3886b2d
comments
May 18, 2021
0e08698
Merge branch 'master' of https://github.com/PyTorchLightning/pytorch-…
May 19, 2021
f123b19
fix and add changelog
May 19, 2021
708e092
formatting
May 19, 2021
2137fb3
remove redundant return
May 20, 2021
18dd3c4
add random master port for deep speed test
May 21, 2021
2720b01
testing for changing order of seed and random master port
May 21, 2021
bf27d41
rebase
May 21, 2021
88e0224
comments and add test for teardown
May 21, 2021
33707d1
fix and comments
May 21, 2021
3fb712b
remove unintended change
May 21, 2021
cb8d7c0
fix
May 22, 2021
297fbea
separate tests
May 22, 2021
73990c5
add missing imports
May 22, 2021
b8c3024
fix
May 22, 2021
5f97fd2
add barrier
May 22, 2021
5d74fc1
fix
May 22, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 1 addition & 8 deletions pytorch_lightning/accelerators/accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,14 +154,7 @@ def root_device(self) -> torch.device:
return self.training_type_plugin.root_device

def teardown(self) -> None:
"""
This method is called to teardown the training process.
It is the right place to release memory and free other ressources.

ananthsub marked this conversation as resolved.
Show resolved Hide resolved
By default we add a barrier here to synchronize processes before returning
control back to the caller.
"""
self.barrier("teardown")
self.training_type_plugin.teardown()

def batch_to_device(
self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: Optional[int] = None
Expand Down
7 changes: 0 additions & 7 deletions pytorch_lightning/accelerators/gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,13 +47,6 @@ def on_train_start(self) -> None:
with torch.cuda.device(self.root_device):
torch.cuda.empty_cache()

def teardown(self) -> None:
self.lightning_module.cpu()

# clean up memory
with torch.cuda.device(self.root_device):
torch.cuda.empty_cache()

@staticmethod
def set_nvidia_flags(local_rank: int) -> None:
# set the correct cuda visible devices (using pci order)
Expand Down
5 changes: 0 additions & 5 deletions pytorch_lightning/accelerators/tpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Any, Callable

from torch.optim import Optimizer
Expand Down Expand Up @@ -51,10 +50,6 @@ def setup(self, trainer: 'pl.Trainer', model: 'pl.LightningModule') -> None:
raise MisconfigurationException("TPUs only support a single tpu core or tpu spawn training.")
return super().setup(trainer, model)

def teardown(self) -> None:
if "PT_XLA_DEBUG" in os.environ:
del os.environ["PT_XLA_DEBUG"]

def run_optimizer_step(
self, optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any
) -> None:
Expand Down
32 changes: 30 additions & 2 deletions pytorch_lightning/plugins/training_type/parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
from pytorch_lightning.overrides.base import unwrap_lightning_module
from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment
from pytorch_lightning.plugins.training_type.training_type_plugin import TrainingTypePlugin
from pytorch_lightning.utilities import _XLA_AVAILABLE
from pytorch_lightning.utilities.distributed import all_gather_ddp_if_available, ReduceOp


Expand All @@ -40,13 +41,17 @@ def __init__(

@property
@abstractmethod
def root_device(self):
def root_device(self) -> torch.device:
raise NotImplementedError

@property
def on_gpu(self):
def on_gpu(self) -> bool:
return self.root_device.type == "cuda" and torch.cuda.is_available()

@property
def on_tpu(self) -> bool:
return self.root_device.type == "xla" and _XLA_AVAILABLE

@property
def lightning_module(self):
return unwrap_lightning_module(self._model)
Expand Down Expand Up @@ -122,3 +127,26 @@ def block_backward_sync(self):
yield None
else:
yield None

def teardown(self) -> None:
"""
This method is called to teardown the training process.
It is the right place to release memory and free other ressources.
carmocca marked this conversation as resolved.
Show resolved Hide resolved

By default, we teardown in the following way:
1. if training is on gpu, we move lightning module to CPU and
clean up cuda memory and we add a barrier
2. if training is on tpu, we clean up os environment debug flag
At the end, we synchronize processes before returning control back to the caller.
"""
if self.on_gpu:
# GPU teardown
self.lightning_module.cpu()
# clean up memory
with torch.cuda.device(self.root_device):
torch.cuda.empty_cache()
elif self.on_tpu:
# TPU teardown
if "PT_XLA_DEBUG" in os.environ:
del os.environ["PT_XLA_DEBUG"]
self.barrier("teardown")
29 changes: 27 additions & 2 deletions pytorch_lightning/plugins/training_type/single_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Any, Optional, Union

import torch

from pytorch_lightning.plugins.training_type.training_type_plugin import TrainingTypePlugin
from pytorch_lightning.utilities import _XLA_AVAILABLE


class SingleDevicePlugin(TrainingTypePlugin):
Expand All @@ -30,11 +32,11 @@ def __init__(self, device: torch.device):

@property
def on_tpu(self) -> bool:
return False
return self.root_device.type == "xla" and _XLA_AVAILABLE

@property
def on_gpu(self) -> bool:
return self.device.type == "cuda" and torch.cuda.is_available()
return self.root_device.type == "cuda" and torch.cuda.is_available()

def reduce(self, tensor: Union[Any, torch.Tensor], *args: Any, **kwargs: Any) -> Union[Any, torch.Tensor]:
"""
Expand Down Expand Up @@ -78,3 +80,26 @@ def barrier(self, *args, **kwargs) -> None:

def broadcast(self, obj: object, src: int = 0) -> object:
return obj

def teardown(self) -> None:
"""
This method is called to teardown the training process.
It is the right place to release memory and free other ressources.
carmocca marked this conversation as resolved.
Show resolved Hide resolved

By default, we teardown in the following way:
1. if training is on gpu, we move lightning module to CPU and clean up
cuda memory;
2. if training is on tpu, we clean up os environment debug flag
"""
if self.on_gpu:
# GPU teardown
self.lightning_module.cpu()
# clean up memory
with torch.cuda.device(self.root_device):
torch.cuda.empty_cache()
return
if self.on_tpu:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we could the tpu logic to the single_tpu training plugin?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@kaushikb11 n00b question: why is single_tpu its own plugin vs using the single-device plugin?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We have it decoupled. We could find a way to have it as one, but it would get messy with conditions and error-prone and to write tpu specific code.

# TPU teardown
if "PT_XLA_DEBUG" in os.environ:
del os.environ["PT_XLA_DEBUG"]
return
4 changes: 0 additions & 4 deletions pytorch_lightning/plugins/training_type/single_tpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,6 @@ def __init__(self, device: int, debug: bool = False):
self.tpu_local_core_rank = 0
self.tpu_global_core_rank = 0

@property
def on_tpu(self) -> bool:
return True

@property
def is_distributed(self) -> bool:
return False
Expand Down
16 changes: 16 additions & 0 deletions pytorch_lightning/plugins/training_type/training_type_plugin.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,11 +60,19 @@ def setup(self, model: Module) -> None:
@abstractmethod
def on_gpu(self) -> bool:
"""Returns whether the current process is done on GPU"""
raise NotImplementedError

@property
@abstractmethod
def on_tpu(self) -> bool:
"""Returns whether the current process is done on TPU"""
raise NotImplementedError

@property
@abstractmethod
def root_device(self) -> torch.device:
"""Returns the root device"""
raise NotImplementedError

@abstractmethod
def model_to_device(self) -> None:
Expand Down Expand Up @@ -290,6 +298,14 @@ def call_configure_sharded_model_hook(self) -> bool:
def call_configure_sharded_model_hook(self, mode: bool) -> None:
self._call_configure_sharded_model_hook = mode

@abstractmethod
def teardown(self) -> None:
"""
This method is called to teardown the training process.
It is the right place to release memory and free other ressources.
carmocca marked this conversation as resolved.
Show resolved Hide resolved
"""
raise NotImplementedError

@classmethod
def register_plugins(cls, plugin_registry):
pass
Empty file.
87 changes: 87 additions & 0 deletions tests/plugins/test_training_type_plugin_device.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock

import torch

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DDPPlugin, DDPSpawnPlugin, SingleDevicePlugin, SingleTPUPlugin, TPUSpawnPlugin
from tests.helpers.runif import RunIf


def test_single_cpu():
"""Tests if on_gpu and on_tpu is set correctly for single cpu plugin."""
trainer = Trainer()
assert isinstance(trainer.training_type_plugin, SingleDevicePlugin)
assert not trainer.training_type_plugin.on_gpu
assert not trainer.training_type_plugin.on_tpu
assert trainer.training_type_plugin.root_device == torch.device("cpu")

ananthsub marked this conversation as resolved.
Show resolved Hide resolved

@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0"})
@mock.patch("torch.cuda.device_count", return_value=1)
@mock.patch("torch.cuda.is_available", return_value=True)
def test_single_gpu(device_count_mock, mock_cuda_available):
"""Tests if on_gpu and on_tpu is set correctly for single gpu plugin."""
trainer = Trainer(gpus=1)
assert isinstance(trainer.training_type_plugin, SingleDevicePlugin)
assert trainer.training_type_plugin.on_gpu
assert not trainer.training_type_plugin.on_tpu
assert trainer.training_type_plugin.root_device == torch.device("cuda:0")


@mock.patch("torch.cuda.is_available", return_value=False)
def test_ddp_cpu(mock_cuda_available):
"""Tests if on_gpu and on_tpu is set correctly for ddp_cpu plugin."""
trainer = Trainer(num_processes=2)
assert isinstance(trainer.training_type_plugin, DDPSpawnPlugin)
assert not trainer.training_type_plugin.on_gpu
assert not trainer.training_type_plugin.on_tpu
assert trainer.training_type_plugin.root_device == torch.device("cpu")


@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
@mock.patch("torch.cuda.device_count", return_value=2)
@mock.patch("torch.cuda.is_available", return_value=True)
def test_ddp_multi_gpu(device_count_mock, mock_cuda_available):
"""Tests if on_gpu and on_tpu is set correctly for multi gpu ddp plugin."""
trainer = Trainer(
gpus=2,
accelerator="ddp",
)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert trainer.training_type_plugin.on_gpu
assert not trainer.training_type_plugin.on_tpu
assert trainer.training_type_plugin.root_device == torch.device("cuda:0")


@RunIf(tpu=True)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is there a way to mock patch TPU?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Need to add the functionality.

def test_single_tpu():
"""Tests in_gpu and on_tpu is set correctly for single tpu plugin."""
trainer = Trainer(tpu_cores=1)
assert isinstance(trainer.training_type_plugin, SingleTPUPlugin)
assert not trainer.training_type_plugin.on_gpu
assert trainer.training_type_plugin.on_tpu
assert trainer.training_type_plugin.root_device == torch.device("xla")


@RunIf(tpu=True)
def test_multi_tpu():
"""Tests in_gpu and on_tpu is set correctly for multi tpu plugin."""
trainer = Trainer(tpu_cores=8)
assert isinstance(trainer.training_type_plugin, TPUSpawnPlugin)
assert not trainer.training_type_plugin.on_gpu
assert trainer.training_type_plugin.on_tpu
assert trainer.training_type_plugin.root_device == torch.device("xla")