Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[bugfix] Logging only on not should_accumulate() during training #5417

Merged
merged 6 commits into from
Jan 9, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
import os
from copy import deepcopy
from pprint import pprint
from typing import Iterable, Union

Expand Down Expand Up @@ -158,7 +158,7 @@ def cache_training_step_metrics(self, opt_closure_result):
self.logged_metrics.update(logged_metrics_tmp)
self.cached_results.legacy_batch_log_metrics.update(logged_metrics_tmp)

def log_metrics(self, metrics, grad_norm_dic, step=None, log_train_step_metrics=False):
def log_metrics(self, metrics, grad_norm_dic, step=None):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is it used by a user, right? then let's hold back compatibility with API and add a warning...

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It is internal. LoggerConnector class

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not it is not.

"""Logs the metric dict passed in.
If `step` parameter is None and `step` key is presented is metrics,
uses metrics["step"] as a step
Expand Down Expand Up @@ -186,11 +186,8 @@ def log_metrics(self, metrics, grad_norm_dic, step=None, log_train_step_metrics=

elif step is None:
# added metrics by Lightning for convenience
if log_train_step_metrics:
step = self.trainer.total_batch_idx
else:
scalar_metrics['epoch'] = self.trainer.current_epoch
step = self.trainer.global_step
scalar_metrics['epoch'] = self.trainer.current_epoch
step = self.trainer.global_step

# log actual metrics
if self.trainer.logger is not None:
Expand Down Expand Up @@ -593,6 +590,8 @@ def __gather_result_across_time_and_optimizers(self, epoch_output):
return gathered_epoch_outputs

def log_train_step_metrics(self, batch_output):
if self.trainer.train_loop.should_accumulate() and self.trainer.train_loop.automatic_optimization:
return
_, batch_log_metrics = self.cached_results.update_logger_connector()
# when metrics should be logged
if self.should_update_logs or self.trainer.fast_dev_run is True:
Expand All @@ -601,5 +600,5 @@ def log_train_step_metrics(self, batch_output):
if grad_norm_dic is None:
grad_norm_dic = {}
if len(batch_log_metrics) > 0 or len(grad_norm_dic) > 0:
self.log_metrics(batch_log_metrics, grad_norm_dic, log_train_step_metrics=True)
self.log_metrics(batch_log_metrics, grad_norm_dic)
self.callback_metrics.update(batch_log_metrics)
4 changes: 2 additions & 2 deletions tests/loggers/test_all.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,15 +126,15 @@ def log_metrics(self, metrics, step):
if logger_class == TensorBoardLogger:
expected = [
(0, ['hp_metric']),
(0, ['train_some_val']),
(0, ['epoch', 'train_some_val']),
(0, ['early_stop_on', 'epoch', 'val_acc']),
(0, ['hp_metric']),
(1, ['epoch', 'test_acc', 'test_loss'])
]
assert log_metric_names == expected
else:
expected = [
(0, ['train_some_val']),
(0, ['epoch', 'train_some_val']),
(0, ['early_stop_on', 'epoch', 'val_acc']),
(1, ['epoch', 'test_acc', 'test_loss'])
]
Expand Down
19 changes: 11 additions & 8 deletions tests/loggers/test_tensorboard.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,19 +213,22 @@ def test_tensorboard_with_accummulated_gradients(mock_log_metrics, expected, tmp
Tests to ensure that tensorboard log properly when accumulated_gradients > 1
"""
class TestModel(BoringModel):
_count = 0
_indexes = []

def __init__(self):
super().__init__()
self._count = 0
self._indexes = []

def training_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
self.log('count', self._count, on_step=True, on_epoch=True)
self.log('loss', loss, on_step=True, on_epoch=True)

if self.trainer.logger_connector.should_update_logs:
self._indexes.append(self._count)
if not self.trainer.train_loop.should_accumulate():
if self.trainer.logger_connector.should_update_logs:
self._indexes.append(self.trainer.global_step)

self._count += 1
return loss

def validation_step(self, batch, batch_idx):
Expand All @@ -245,20 +248,20 @@ def configure_optimizers(self):

logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False)

accumulate_grad_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=12,
limit_val_batches=12,
limit_val_batches=0,
max_epochs=3,
gpus=0,
accumulate_grad_batches=accumulate_grad_batches,
accumulate_grad_batches=2,
logger=[logger_0],
log_every_n_steps=3,
)
trainer.fit(model)

mock_count_epochs = [m[2]["step"] for m in mock_log_metrics.mock_calls if "count_epoch" in m[2]["metrics"]]
assert mock_count_epochs == expected

mock_count_steps = [m[2]["step"] for m in mock_log_metrics.mock_calls if "count_step" in m[2]["metrics"]]
assert model._indexes == mock_count_steps
Original file line number Diff line number Diff line change
Expand Up @@ -24,12 +24,16 @@
import numpy as np
import pytest
import torch
from torch.utils.data import Dataset
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset, random_split
from torchvision import transforms
from torchvision.datasets.mnist import MNIST

import pytorch_lightning as pl
from pytorch_lightning import callbacks, Trainer
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.loggers import WandbLogger
from tests.base.boring_model import BoringModel, RandomDictDataset, RandomDictStringDataset
from tests.base.deterministic_model import DeterministicModel

Expand Down