Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ref: unify slurm and TE under backendPlugin 5/n" #4582

Merged
merged 2 commits into from
Nov 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 9 additions & 5 deletions pytorch_lightning/accelerators/ddp2_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,22 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import os

import torch
import torch.distributed as torch_distrib

from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.core.step_result import Result
from pytorch_lightning.distributed.dist import LightningDistributed
from pytorch_lightning import _logger as log
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.accelerators.accelerator import Accelerator, ReduceOp
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities.distributed import rank_zero_only, sync_ddp_if_available
from torch.nn.parallel import DistributedDataParallel
from typing import List, Optional
from typing import List, Optional, Union, Any

try:
from hydra.utils import to_absolute_path, get_original_cwd
Expand Down Expand Up @@ -203,3 +201,9 @@ def configure_sync_batchnorm(self, model: LightningModule) -> LightningModule:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model, process_group=None)

return model

def sync_tensor(self,
tensor: Union[torch.Tensor],
group: Optional[Any] = None,
reduce_op: Optional[Union[ReduceOp, str]] = None) -> torch.Tensor:
return sync_ddp_if_available(tensor, group, reduce_op)
170 changes: 2 additions & 168 deletions pytorch_lightning/accelerators/ddp_cpu_hpc_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,21 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import os
from typing import Any, List, Optional, Union

import torch
import torch.distributed as torch_distrib
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

from pytorch_lightning import _logger as log
from pytorch_lightning.accelerators.accelerator import Accelerator, ReduceOp
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities.distributed import sync_ddp_if_available
from pytorch_lightning.distributed.dist import LightningDistributed
from pytorch_lightning.accelerators.ddp_hpc_accelerator import DDPHPCAccelerator


try:
Expand All @@ -37,167 +23,15 @@
HYDRA_AVAILABLE = True


class DDPCPUHPCAccelerator(Accelerator):
class DDPCPUHPCAccelerator(DDPHPCAccelerator):

def __init__(self, trainer, cluster_environment=None, ddp_plugin=None):
super().__init__(trainer, cluster_environment, ddp_plugin)
self.task_idx = None
self._has_spawned_children = False
self.dist = LightningDistributed()
self.nickname = 'ddp_cpu'

def setup(self, model):
self.trainer.model = model
self.task_idx = self.cluster_environment.local_rank()

def train(self):
model = self.trainer.model
self.ddp_train(process_idx=self.task_idx, model=model)

def set_world_ranks(self, process_idx):
self.trainer.local_rank = process_idx
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes

def model_to_device(self, model, process_idx):
model.cpu()

def get_device_ids(self):
device_ids = None
return device_ids

def training_step(self, args):
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model(*args)
else:
output = self.trainer.model(*args)
return output

def validation_step(self, args):
output = self.training_step(args)
return output

def test_step(self, args):
output = self.training_step(args)
return output

def barrier(self, name: Optional[str] = None):
if torch_distrib.is_initialized():
torch_distrib.barrier()

def early_stopping_should_stop(self, pl_module):
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device)
dist.all_reduce(stop, op=dist.reduce_op.SUM)
dist.barrier()
should_stop = stop == self.trainer.world_size
return should_stop

def broadcast(self, obj, src=0):
return self.dist.broadcast(obj)

def ddp_train(self, process_idx, model):
"""
Entry point for ddp

Args:
process_idx:
mp_queue: multiprocessing queue
model:

Returns:
Dict with evaluation results

"""
# determine which process we are and world size
self.set_world_ranks(process_idx)

# toggle prog bar
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
self.trainer.progress_bar_callback.disable()

# set warning rank
rank_zero_only.rank = self.trainer.global_rank

# set up server using proc 0's ip address
# try to init for 20 times at max in case ports are taken
# where to store ip_table
model.trainer = self.trainer
self.init_ddp_connection(
self.trainer.global_rank,
self.trainer.world_size,
self.trainer.is_slurm_managing_tasks
)

# call setup after the ddp process has connected
self.trainer.call_setup_hook(model)

# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend} (TORCH_ELASTIC)')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
log.info('-' * 100)

# call sync_bn before .cuda(), configure_apex and configure_ddp
if self.trainer.sync_batchnorm:
model = self.configure_sync_batchnorm(model)

# move the model to the correct device
self.model_to_device(model, process_idx)

# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)

# set model properties before going into wrapper
self.trainer.model_connector.copy_trainer_model_properties(model)

# 16-bit
model = self.trainer.precision_connector.connect(model)

# device ids change depending on the DDP setup
device_ids = self.get_device_ids()

# allow user to configure ddp
model = self.configure_ddp(model, device_ids)

# set up training routine
self.trainer.train_loop.setup_training(model)

# train or test
results = self.train_or_test()

# clean up memory
torch.cuda.empty_cache()

return results

def configure_ddp(
self, model: LightningModule, device_ids: List[int]
) -> DistributedDataParallel:
model = self.ddp_plugin.configure_ddp(model, device_ids)
return model

def configure_sync_batchnorm(self, model: LightningModule) -> LightningModule:
"""
Add global batchnorm for a model spread across multiple GPUs and nodes.

Override to synchronize batchnorm between specific process groups instead
of the whole world or use a different sync_bn like `apex`'s version.

Args:
model: pointer to current :class:`LightningModule`.

Return:
LightningModule with batchnorm layers synchronized between process groups
"""
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model, process_group=None)

return model

def sync_tensor(self,
tensor: Union[torch.Tensor],
group: Optional[Any] = None,
reduce_op: Optional[Union[ReduceOp, str]] = None) -> torch.Tensor:
return sync_ddp_if_available(tensor, group, reduce_op)
2 changes: 1 addition & 1 deletion pytorch_lightning/accelerators/ddp_hpc_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def ddp_train(self, process_idx, model):
# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend} (on SLURM)')
log.info(f'distributed_backend={self.trainer.distributed_backend}')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
log.info('-' * 100)

Expand Down