Skip to content

torch-optimizer -- collection of optimizers for Pytorch

License

Notifications You must be signed in to change notification settings

Laksh1997/pytorch-optimizer

 
 

Repository files navigation

torch-optimizer

https://travis-ci.com/jettify/pytorch-optimizer.svg?branch=master Documentation Status

torch-optimizer -- collection of optimizers for PyTorch compatible with optim module.

Simple example

import torch_optimizer as optim

# model = ...
optimizer = optim.DiffGrad(model.parameters(), lr=0.001)
optimizer.step()

Installation

Installation process is simple, just:

$ pip install torch_optimizer

Documentation

https://pytorch-optimizer.rtfd.io

Supported Optimizers

AccSGD https://arxiv.org/abs/1803.05591
AdaBound https://arxiv.org/abs/1902.09843
AdaMod https://arxiv.org/abs/1910.12249
AdamP https://arxiv.org/abs/2006.08217
DiffGrad https://arxiv.org/abs/1909.11015
Lamb https://arxiv.org/abs/1904.00962
Lookahead https://arxiv.org/abs/1907.08610
NovoGrad https://arxiv.org/abs/1905.11286
PID https://www4.comp.polyu.edu.hk/~cslzhang/paper/CVPR18_PID.pdf
QHAdam https://arxiv.org/abs/1810.06801
QHM https://arxiv.org/abs/1810.06801
RAdam https://arxiv.org/abs/1908.03265
Ranger https://arxiv.org/abs/1908.00700v2
RangerQH https://arxiv.org/abs/1908.00700v2
RangerVA https://arxiv.org/abs/1908.00700v2
SGDW https://arxiv.org/abs/1608.03983
Shampoo https://arxiv.org/abs/1802.09568
Yogi https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization

Visualizations

Visualizations help us to see how different algorithms deals with simple situations like: saddle points, local minima, valleys etc, and may provide interesting insights into inner workings of algorithm. Rosenbrock and Rastrigin benchmark functions was selected, because:

  • Rosenbrock (also known as banana function), is non-convex function that has one global minima (1.0. 1.0). The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minima, however, is difficult. Optimization algorithms might pay a lot of attention to one coordinate, and have problems to follow valley which is relatively flat.
  • Rastrigin function is a non-convex and has one global minima in (0.0, 0.0). Finding the minimum of this function is a fairly difficult problem due to its large search space and its large number of local minima.

    https://upload.wikimedia.org/wikipedia/commons/8/8b/Rastrigin_function.png

Each optimizer performs 501 optimization steps. Learning rate is best one found by hyper parameter search algorithm, rest of tuning parameters are default. It is very easy to extend script and tune other optimizer parameters.

python examples/viz_optimizers.py

AccSGD

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_AccSGD.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_AccSGD.png
import torch_optimizer as optim

# model = ...
optimizer = optim.AccSGD(
    model.parameters(),
    lr=1e-3,
    kappa=1000.0,
    xi=10.0,
    small_const=0.7,
    weight_decay=0
)
optimizer.step()

Paper: On the insufficiency of existing momentum schemes for Stochastic Optimization (2019) [https://arxiv.org/abs/1803.05591]

Reference Code: https://github.com/rahulkidambi/AccSGD

AdaBound

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_AdaBound.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_AdaBound.png
import torch_optimizer as optim

# model = ...
optimizer = optim.AdaBound(
    m.parameters(),
    lr= 1e-3,
    betas= (0.9, 0.999),
    final_lr = 0.1,
    gamma=1e-3,
    eps= 1e-8,
    weight_decay=0,
    amsbound=False,
)
optimizer.step()

Paper: Adaptive Gradient Methods with Dynamic Bound of Learning Rate (2019) [https://arxiv.org/abs/1902.09843]

Reference Code: https://github.com/Luolc/AdaBound

AdaMod

AdaMod method restricts the adaptive learning rates with adaptive and momental upper bounds. The dynamic learning rate bounds are based on the exponential moving averages of the adaptive learning rates themselves, which smooth out unexpected large learning rates and stabilize the training of deep neural networks.

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_AdaMod.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_AdaMod.png
import torch_optimizer as optim

# model = ...
optimizer = optim.AdaMod(
    m.parameters(),
    lr= 1e-3,
    betas=(0.9, 0.999),
    beta3=0.999,
    eps=1e-8,
    weight_decay=0,
)
optimizer.step()

Paper: An Adaptive and Momental Bound Method for Stochastic Learning. (2019) [https://arxiv.org/abs/1910.12249]

Reference Code: https://github.com/lancopku/AdaMod

AdamP

AdamP propose a simple and effective solution: at each iteration of Adam optimizer applied on scale-invariant weights (e.g., Conv weights preceding a BN layer), AdamP remove the radial component (i.e., parallel to the weight vector) from the update vector. Intuitively, this operation prevents the unnecessary update along the radial direction that only increases the weight norm without contributing to the loss minimization.

import torch_optimizer as optim

# model = ...
optimizer = optim.AdamP(
    m.parameters(),
    lr= 1e-3,
    betas=(0.9, 0.999),
    eps=1e-8,
    weight_decay=0,
    delta = 0.1,
    wd_ratio = 0.1
)
optimizer.step()

Paper: Slowing Down the Weight Norm Increase in Momentum-based Optimizers. (2020) [https://arxiv.org/abs/2006.08217]

Reference Code: https://github.com/clovaai/AdamP

DiffGrad

Optimizer based on the difference between the present and the immediate past gradient, the step size is adjusted for each parameter in such a way that it should have a larger step size for faster gradient changing parameters and a lower step size for lower gradient changing parameters.

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_DiffGrad.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_DiffGrad.png
import torch_optimizer as optim

# model = ...
optimizer = optim.DiffGrad(
    m.parameters(),
    lr= 1e-3,
    betas=(0.9, 0.999),
    eps=1e-8,
    weight_decay=0,
)
optimizer.step()

Paper: diffGrad: An Optimization Method for Convolutional Neural Networks. (2019) [https://arxiv.org/abs/1909.11015]

Reference Code: https://github.com/shivram1987/diffGrad

Lamb

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_Lamb.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_Lamb.png
import torch_optimizer as optim

# model = ...
optimizer = optim.Lamb(
    m.parameters(),
    lr= 1e-3,
    betas=(0.9, 0.999),
    eps=1e-8,
    weight_decay=0,
)
optimizer.step()

Paper: Large Batch Optimization for Deep Learning: Training BERT in 76 minutes (2019) [https://arxiv.org/abs/1904.00962]

Reference Code: https://github.com/cybertronai/pytorch-lamb

Lookahead

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_LookaheadYogi.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_LookaheadYogi.png
import torch_optimizer as optim

# model = ...
# base optimizer, any other optimizer can be used like Adam or DiffGrad
yogi = optim.Yogi(
    m.parameters(),
    lr= 1e-2,
    betas=(0.9, 0.999),
    eps=1e-3,
    initial_accumulator=1e-6,
    weight_decay=0,
)

optimizer = optim.Lookahead(yogi, k=5, alpha=0.5)
optimizer.step()

Paper: Lookahead Optimizer: k steps forward, 1 step back (2019) [https://arxiv.org/abs/1907.08610]

Reference Code: https://github.com/alphadl/lookahead.pytorch

NovoGrad

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_NovoGrad.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_NovoGrad.png
import torch_optimizer as optim

# model = ...
optimizer = optim.NovoGrad(
    m.parameters(),
    lr= 1e-3,
    betas=(0.9, 0.999),
    eps=1e-8,
    weight_decay=0,
    grad_averaging=False,
    amsgrad=False,
)
optimizer.step()

Paper: Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks (2019) [https://arxiv.org/abs/1905.11286]

Reference Code: https://github.com/NVIDIA/DeepLearningExamples/

PID

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_PID.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_PID.png
import torch_optimizer as optim

# model = ...
optimizer = optim.PID(
    m.parameters(),
    lr=1e-3,
    momentum=0,
    dampening=0,
    weight_decay=1e-2,
    integral=5.0,
    derivative=10.0,
)
optimizer.step()

Paper: A PID Controller Approach for Stochastic Optimization of Deep Networks (2018) [http://www4.comp.polyu.edu.hk/~cslzhang/paper/CVPR18_PID.pdf]

Reference Code: https://github.com/tensorboy/PIDOptimizer

QHAdam

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_QHAdam.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_QHAdam.png
import torch_optimizer as optim

# model = ...
optimizer = optim.QHAdam(
    m.parameters(),
    lr= 1e-3,
    betas=(0.9, 0.999),
    nus=(1.0, 1.0),
    weight_decay=0,
    decouple_weight_decay=False,
    eps=1e-8,
)
optimizer.step()

Paper: Quasi-hyperbolic momentum and Adam for deep learning (2019) [https://arxiv.org/abs/1810.06801]

Reference Code: https://github.com/facebookresearch/qhoptim

QHM

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_QHM.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_QHM.png
import torch_optimizer as optim

# model = ...
optimizer = optim.QHM(
    m.parameters(),
    lr=1e-3,
    momentum=0,
    nu=0.7,
    weight_decay=1e-2,
    weight_decay_type='grad',
)
optimizer.step()

Paper: Quasi-hyperbolic momentum and Adam for deep learning (2019) [https://arxiv.org/abs/1810.06801]

Reference Code: https://github.com/facebookresearch/qhoptim

RAdam

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_RAdam.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_RAdam.png
import torch_optimizer as optim

# model = ...
optimizer = optim.RAdam(
    m.parameters(),
    lr= 1e-3,
    betas=(0.9, 0.999),
    eps=1e-8,
    weight_decay=0,
)
optimizer.step()

Paper: On the Variance of the Adaptive Learning Rate and Beyond (2019) [https://arxiv.org/abs/1908.03265]

Reference Code: https://github.com/LiyuanLucasLiu/RAdam

Ranger

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_Ranger.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_Ranger.png
import torch_optimizer as optim

# model = ...
optimizer = optim.Ranger(
    m.parameters(),
    lr=1e-3,
    alpha=0.5,
    k=6,
    N_sma_threshhold=5,
    betas=(.95, 0.999),
    eps=1e-5,
    weight_decay=0
)
optimizer.step()

Paper: Calibrating the Adaptive Learning Rate to Improve Convergence of ADAM (2019) [https://arxiv.org/abs/1908.00700v2]

Reference Code: https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

RangerQH

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_RangerQH.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_RangerQH.png
import torch_optimizer as optim

# model = ...
optimizer = optim.RangerQH(
    m.parameters(),
    lr=1e-3,
    betas=(0.9, 0.999),
    nus=(.7, 1.0),
    weight_decay=0.0,
    k=6,
    alpha=.5,
    decouple_weight_decay=False,
    eps=1e-8,
)
optimizer.step()

Paper: Calibrating the Adaptive Learning Rate to Improve Convergence of ADAM (2019) [https://arxiv.org/abs/1908.00700v2]

Reference Code: https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

RangerVA

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_RangerVA.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_RangerVA.png
import torch_optimizer as optim

# model = ...
optimizer = optim.RangerVA(
    m.parameters(),
    lr=1e-3,
    alpha=0.5,
    k=6,
    n_sma_threshhold=5,
    betas=(.95, 0.999),
    eps=1e-5,
    weight_decay=0,
    amsgrad=True,
    transformer='softplus',
    smooth=50,
    grad_transformer='square'
)
optimizer.step()

Paper: Calibrating the Adaptive Learning Rate to Improve Convergence of ADAM (2019) [https://arxiv.org/abs/1908.00700v2]

Reference Code: https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

SGDW

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_SGDW.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_SGDW.png
import torch_optimizer as optim

# model = ...
optimizer = optim.SGDW(
    m.parameters(),
    lr= 1e-3,
    momentum=0,
    dampening=0,
    weight_decay=1e-2,
    nesterov=False,
)
optimizer.step()

Paper: SGDR: Stochastic Gradient Descent with Warm Restarts (2017) [https://arxiv.org/abs/1608.03983]

Reference Code: pytorch/pytorch#22466

Shampoo

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_Shampoo.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_Shampoo.png
import torch_optimizer as optim

# model = ...
optimizer = optim.Shampoo(
    m.parameters(),
    lr=1e-1,
    momentum=0.0,
    weight_decay=0.0,
    epsilon=1e-4,
    update_freq=1,
)
optimizer.step()

Paper: Shampoo: Preconditioned Stochastic Tensor Optimization (2018) [https://arxiv.org/abs/1802.09568]

Reference Code: https://github.com/moskomule/shampoo.pytorch

Yogi

Yogi is optimization algorithm based on ADAM with more fine grained effective learning rate control, and has similar theoretical guarantees on convergence as ADAM.

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_Yogi.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_Yogi.png
import torch_optimizer as optim

# model = ...
optimizer = optim.Yogi(
    m.parameters(),
    lr= 1e-2,
    betas=(0.9, 0.999),
    eps=1e-3,
    initial_accumulator=1e-6,
    weight_decay=0,
)
optimizer.step()

Paper: Adaptive Methods for Nonconvex Optimization (2018) [https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization]

Reference Code: https://github.com/4rtemi5/Yogi-Optimizer_Keras

Adam (PyTorch built-in)

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_Adam.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_Adam.png

SGD (PyTorch built-in)

https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rastrigin_SGD.png https://raw.githubusercontent.com/jettify/pytorch-optimizer/master/docs/rosenbrock_SGD.png

About

torch-optimizer -- collection of optimizers for Pytorch

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.9%
  • Makefile 1.1%