Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add the magnetosheath #5

Merged
merged 2 commits into from
Nov 3, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
with open('HISTORY.rst') as history_file:
history = history_file.read()

requirements = ['pandas', 'numpy']
requirements = ['pandas', 'numpy', 'matplotlib']

setup_requirements = []

Expand Down
2 changes: 1 addition & 1 deletion space/coordinates/coordinates.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ def spherical_to_cartesian(R, theta, phi):

def cartesian_to_spherical(X,Y,Z):
r = np.sqrt(X**2+Y**2+Z**2)
theta = np.arccos(X/R)
theta = np.arccos(X/r)
phi = np.arctan2(Z,Y)
return r,theta,phi

Expand Down
132 changes: 75 additions & 57 deletions space/models/planetary.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,14 @@
sys.path.append('.')
from .. import utils
from ..coordinates import coordinates as coords
from ..smath import resolve_poly2



def checking_angles(theta, phi):
theta = utils.listify(theta)
phi = utils.listify(phi)
if (len(np.shape(theta)) == 1) & (len(np.shape(phi)) == 1) & (len(theta) > 1) & (len(phi) > 1):
theta, phi = np.meshgrid(theta, phi)
print('theta and phi are both 1D array : applying meshgrid to do a 3D boundaries')
def _checking_angles(theta, phi):

if isinstance(theta, np.ndarray) and isinstance(theta, np.ndarray) and len(theta.shape) > 1 and len(phi.shape) > 1:
return np.meshgrid(theta, phi)
return theta, phi


Expand All @@ -33,15 +32,14 @@ def _formisano1979(theta, phi, **kwargs):

def formisano1979(theta, phi, **kwargs):
'''
Formisano 2005 magnetopause model. Give the default position of the magnetopause.
Formisano 1979 magnetopause model. Give the default position of the magnetopause.
function's arguments :
- theta : angle in radiant, can be int, float or array (1D or 2D)
- phi : angle in radiant, can be int, float or array (1D or 2D)
kwargs:
- boundary : "magnetopause", "bow_shock"
- base : can be "cartesian" (default) or "spherical"


information : to get a particular point theta and phi must be an int or a float
(ex : the nose of the boundary is given with the input theta=0 and phi=0). If a plan (2D) of
the boundary is wanted one of the two angle must be an array and the other one must be
Expand All @@ -59,17 +57,25 @@ def formisano1979(theta, phi, **kwargs):
else:
raise ValueError("boundary: {} not allowed".format(kwargs["boundary"]))

theta, phi = checking_angles(theta, phi)
theta, phi = _checking_angles(theta, phi)
r = _formisano1979(theta, phi, coefs = coefs)
base = kwargs.get("base", "cartesian")
if base == "cartesian":
return coords.spherical_to_cartesian(R, theta, phi)
return coords.spherical_to_cartesian(r, theta, phi)
elif base == "spherical":
return r, theta, phi
raise ValueError("unknown base '{}'".format(kwargs["base"]))



def mp_formisano1979(theta, phi, **kwargs):
return formisano1979(theta, phi, boundary="magnetopause", **kwargs)

def bs_formisano1979(theta, phi, **kwargs):
return formisano1979(theta, phi, boundary="bow_shock", **kwargs)




def Fairfield1971(x, args):

Expand Down Expand Up @@ -105,56 +111,11 @@ def Fairfield1971(x, args):
return pos.dropna()


def Formisano1979(x, args):

'''
Formisano 1979 : Magnetopause and Bow shock models. Give positions of the boudaries in plans (XY) with Z=0 and (XZ) with Y=0.
function's arguments :
- x : X axis (array) in Re (earth radii)
- args : coefficients Aij are determined from many boundary crossings and they depend on upstream conditions.

--> Default parameter for the bow shock and the magnetopause respectively are :
default_bs_formisano = [0.52,1,1.05,0.13,-0.16,-0.08,47.53,-0.42,0.67,-613]
default_mp_formisano = [0.65,1,1.16,0.03,-0.28,-0.11,21.41,0.46,-0.36,-221]

return : DataFrame (Pandas) with the position (X,Y,Z) in Re of the wanted boudary to plot (XY) and (XZ) plans.
'''


a11,a22,a33,a12,a13,a23,a14,a24,a34,a44 = args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9]

a_y = a22
b_y = a12*x + a24
c_y = a11*x**2 + a14*x + a44

delta_y =(b_y**2-4*a_y*c_y)


ym = (-b_y - np.sqrt(delta_y))/(2*a_y)
yp = (-b_y + np.sqrt(delta_y))/(2*a_y)

a_z = a33
b_z = a13*x + a34
c_z = a11*x**2 + a14*x + a44

delta_z =(b_z**2-4*a_z*c_z)

zm = (-b_z - np.sqrt(delta_z))/(2*a_z)
zp = (-b_z + np.sqrt(delta_z))/(2*a_z)


pos=pd.DataFrame({'X' : np.concatenate([x, x[::-1]]),
'Y' : np.concatenate([yp, ym[::-1]]),
'Z' : np.concatenate([zp, zm[::-1]]),})

return pos.dropna()






def BS_Jerab2005( Np, V, Ma, B, gamma=2.15 ):
def bs_Jerab2005( Np, V, Ma, B, gamma=2.15 ):

'''
Jerab 2005 Bow shock model. Give positions of the box shock in plans (XY) with Z=0 and (XZ) with Y=0 as a function of the upstream solar wind.
Expand Down Expand Up @@ -215,7 +176,7 @@ def make_Rav(theta,phi):
return pos.sort_values('Y')


def shue1998(theta, phi, **kwargs):
def mp_shue1998(theta, phi, **kwargs):
'''
Shue 1998 Magnetopause model.

Expand Down Expand Up @@ -351,3 +312,60 @@ def quad(i, s):
return r+Q


_models = {"mp_shue": mp_shue1998,
"mp_formisano1979": mp_formisano1979,
"bs_formisano1979": bs_formisano1979,
"bs_jerab": bs_Jerab2005}


class Magnetosheath:
def __init__(self, **kwargs):
self.magnetopause = _models[kwargs.get("magnetopause", "shue")]
self.bow_shock = _models[kwargs.get("bow_shock", "jerab")]

def boundaries(self, theta, phi, **kwargs):
return self.magnetopause(theta, phi, **kwargs), self.bow_shock(theta, phi, **kwargs)


def _interest_points(model, **kwargs):
dup = kwargs.copy()
dup["base"] = "cartesian"
x = model(0, 0, **dup)[0]
y = model(np.pi / 2, 0, **dup)[1]
xf = x - y ** 2 / (4 * x)
return x, y, xf


def _parabolic_approx(theta, phi, x, xf, **kwargs):
theta, phi = _checking_angles(theta, phi)
K = x - xf
a = np.sin(theta) ** 2
b = 4 * K * np.cos(theta)
c = -4 * K * x
r = resolve_poly2(a, b, c)[0]
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

adazd

return coords.BaseChoice(kwargs.get("base", "cartesian"), r, theta, phi)


class ParabolicMagnetosheath:
def __init__(self, **kwargs):
self._magnetopause = _models[kwargs.get("magnetopause", "shue")]
self._bow_shock = _models[kwargs.get("bow_shock", "jerab")]

def magnetopause(self, theta, phi, **kwargs):
return self._parabolize(theta, phi, **kwargs)[0]
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

zdazcazca


def bow_shock(self, theta, phi, **kwargs):
return self._parabolize(theta, phi, **kwargs)[1]

def _parabolize(self, theta, phi, **kwargs):
xmp, y, xfmp = _interest_points(self._magnetopause, **kwargs)
xbs, y, xfbs = _interest_points(self._bow_shock, **kwargs)
if kwargs.get("confocal", False) is True:
xfmp = xmp / 2
xfbs = xmp / 2
mp_coords = _parabolic_approx(theta, phi, xmp, xfmp, **kwargs)
bs_coords = _parabolic_approx(theta, phi, xbs, xfbs, **kwargs)
return mp_coords, bs_coords

def boundaries(self, theta, phi, **kwargs):
return self._parabolize(theta, phi, **kwargs)
59 changes: 59 additions & 0 deletions space/plot/planet_env.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@

import matplotlib.pyplot as plt

def layout_EarthEnv_3planes(**kwargs):
#figsize=(15,4.5),xlim=(-30,30),ylim=(-30,30),zlim =(-30,30),alpha=0.5):

figsize = kwargs.get("kwargs", (15, 4.5))

fig, (ax0, ax1, ax2) = plt.subplots(ncols=3,figsize=figsize,constrained_layout=True)

ax0.set_xlabel('X (Re)')
ax0.set_ylabel('Y (Re)')
ax1.set_xlabel('X (Re)')
ax1.set_ylabel('Z (Re)')
ax2.set_xlabel('Y (Re)')
ax2.set_ylabel('Z (Re)')
ax0.axhline(0, color='k', ls='dotted', alpha=alpha)
ax0.axvline(0, color='k', ls='dotted', alpha=alpha)
ax1.axhline(0, color='k', ls='dotted', alpha=alpha)
ax1.axvline(0, color='k', ls='dotted', alpha=alpha)
ax2.axhline(0, color='k', ls='dotted', alpha=alpha)
ax2.axvline(0, color='k', ls='dotted', alpha=alpha)
ax0.set_xlim(xlim)
ax0.set_ylim(ylim)
ax1.set_xlim(xlim)
ax1.set_ylim(zlim)
ax2.set_xlim(ylim)
ax2.set_ylim(zlim)

return ax0,ax1,ax2

# plot_boundaries(MP, BS, slice_x=22, slice_y=24, slice_z=0)


def make_YZ_plan(pos):
a = np.linspace(0,2*np.pi,100)
r=abs(pos[(pos.X**2).argmin(): (pos.X**2).argmin()+1].Y.values)
return(r*np.cos(a),r*np.sin(a))





def plot_boudaries(MP, BS, **kwargs):
style = kwargs.get("style", ['--k' , '--k'])
alpha = kwargs.get("alpha", 0.6)
axes = kwargs.get("axes", layout_EarthEnv_3planes(**kwargs))

if "slice_x" in kwargs:
axes[0].plot()

axes[0].plot(MP.X,MP.Y,style[0], alpha=alpha)
axes[0].plot(BS.X,BS.Y,style[1], alpha=alpha)

axes[1].plot(MP.X,MP.Z,style[0], alpha=alpha)
axes[1].plot(BS.X,BS.Z,style[1], alpha=alpha)

axes[2].plot(make_YZ_plan(MP)[0], make_YZ_plan(MP)[1],style[0],alpha=alpha)
axes[2].plot(make_YZ_plan(BS)[0], make_YZ_plan(BS)[1],style[1],alpha=alpha)
28 changes: 28 additions & 0 deletions space/smath.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import numpy as np

def norm(u, v, w):
return np.sqrt(u**2 + v**2 + w**2)


def resolve_poly2(a, b, c):
if isinstance(a, np.ndarray):
r1 = np.zeros_like(a)
r2 = np.zeros_like(a)
a_null = np.where(np.abs(a) < 1e-6)[0]

delta = b ** 2 - 4 * a * c
np.testing.assert_array_less(-delta, 0)

r1, r2 = (-b + np.sqrt(delta)) / (2 * a), (-b + np.sqrt(delta)) / (2 * a)
if isinstance(c, np.ndarray):
c = c[a_null]
if isinstance(b, np.ndarray):
b = b[a_null]
r1[a_null] = r2[a_null] = -c / b
else:
delta = b ** 2 - 4 * a * c
np.testing.assert_array_less(-delta, 0)
r1, r2 = (-b + np.sqrt(delta)) / (2 * a), (-b - np.sqrt(delta)) / (2 * a)
if np.abs(a) < 1e-6:
r1 = r2 = -c / b
return r1, r2